LModeA-nano

Release v1

ΥT

May 22, 2022

GETTING STARTED

1	Rece	nt news and publications	3
	1.1	Install LModeA-nano	3
	1.2	Install PyMOL	3
	1.3	Quickstart Examples	4
	1.4	Prerequisite Knowledge	8
	1.5	Local Vibrational Mode Theory	8
	1.6	Solid-state Modeling Packages	11
	1.7	Quantum Chemistry Modeling Packages	39
	1.8	Finite Difference Method	41
	1.9	Frequently Asked Questions	42
	1.10	Need Help	44
	1.11	Citing LModeA-nano	44
	1.12	Application of LModeA-nano	44
2	Ackn	owledgement & Funding	47

This manual focuses on the LModeA-nano as a PyMOL plugin designed to perform Local Vibrational Mode Analysis on both solids and molecules. This theoretical tool can quantify the intrinsic strength of chemical bonds in terms of local stretching force constant.

CHAPTER

RECENT NEWS AND PUBLICATIONS

1.1 Install LModeA-nano

LModeA-nano is a PyMOL plugin, therefore, PyMOL program (version >= 2.5) has to be installed first. If PyMOL is not installed on your computer yet, please check *Install PyMOL*.

The latest code of LModeA-nano can be obtained at GitHub repo https://github.com/smutao/LModeA-nano. By clicking Code \rightarrow Download ZIP, the source package LModeA-nano-main.zip is downloaded to your disk and this zip file needs to be uncompressed as a folder before the next step.

[GitLab repo https://gitlab.com/smutao/LModeA-nano Download]

After launching PyMOL program on your computer, navigate to the menu bar **Plugin** \rightarrow **Plugin Manager**. In the popup dialog window **Plugin Manager**, navigate to **Install New Plugin** tab, click **Choose file...** button. Then find the LModeA-nano-main folder and choose __init__.py, click **OK** twice in the pop-up windows. LModeA-nano is now successfully installed and you should be able to see **LModeA-nano** in the drop-down list of **Plugin** menu of PyMOL.

1.2 Install PyMOL

1.2.1 Binary from official website

Download PyMOL package from the official website maintained by Schrödinger. This incentive binary version has bundled Python environment and necessary packages.

We recommend using this version of PyMOL due to the easy installation.

1.2.2 Pre-built open-source version

Mac OS users

Latest PyMOL is available in the third-party package managers like Homebrew and MacPorts. See https://pymolwiki. org/index.php/MAC_Install.

Linux users

Latest PyMOL can be installed via the native package manager (e.g. yum, pacman) of the Linux distribution. See https://pymolwiki.org/index.php/Linux_Install.

For Ubuntu-based distros (e.g. Ubuntu, Pos OS), PyMOL 2.5+ is available in the software repository for 22.04 LTS and later versions. Therefore, it can be easily installed via "sudo apt install python3-pymol".

PyMOL from Snap and Flatpak package managers has not been tested and it might have issue when installing LModeAnano as a plugin.

Windows users

Christoph Gohlke from UC Irvine provides the pre-built open-source version of PyMOL for Windows on his website.

Instructions on how to install this pre-compiled PyMOL can be found at

- https://pymolwiki.org/index.php/Windows_Install#Open-Source_PyMOL
- https://omicx.cc/posts/2021-04-20-install-pymol-windows/
- https://www.youtube.com/watch?v=B5GbuAND3IQ

For LModeA-nano to function properly, the PyQt5 package should be installed. One may try "pip install pyqt5" if LModeA-nano has problem while launching.

1.2.3 Compile open-source version

For Linux users who are familiar with compiling programs, it is possible to build the open-source PyMOL from source code on GitHub. Detailed instructions can be found at https://pymolwiki.org/index.php/Linux_Install#Install_from_source.

Note: To make LModeA-nano properly work, the Python environment which compiles the PyMOL source code needs the numpy package installed.

1.3 Quickstart Examples

The following two examples may familiarize you with the use of LModeA-nano.

1.3.1 2D Graphene calculated by CRYSTAL17

In the LModeA-nano-main/quickstart/graphene directory, two files were generated by the vibrational frequency calculation with CRYSTAL17 program

- crystal_21991013.out CRYSTAL output file of vibrational analysis
- HESSFREQ.DAT Hessian file generated after vibrational analysis calculation

In the same directory, we compose an input file crystal.inp for LModeA-nano

```
@crystal
```

```
OUTPUT = crystal_21991013.out
HESSFREQ = HESSFREQ.DAT
```

Following these steps

- open a new PyMOL window and launch LModeA-nano by clicking Plugin \rightarrow LModeA-nano
- click the ... (Browse) button and select the crystal.inp file
- change the program drop-down list from VASP to CRYSTAL
- click Load
- change Dimensions to 2 and click Confirm button
- change the supercell size percentage from 110% to 140% and click Partial Supercell button

We will see the structure like the following

× _ + PyMOL	× LModeA-nano	
File Edit Build Movie Display Setting Scene Mouse Wizard Plug GL_VERSION: 4.6 (Compatibility Profile) Mesa 21.2.2 Detected 6 CPU cores. Enabled multithreaded rendering.	gin He Zoom Local Vibrational Mode Analysis in Solids and Molecules	
Setting- Warning: antialias_shader is not supported in Open- Source version of PyMOL Builde	Stop Input File 2d-graphene/crystal.inp CRYSTAL er Pr Solid Molecule Lin. Mol. Load	
PyMOL>	Lattice Vector (Å) Dimensions 2 Confirm	n
	al 2:142555000,-1.25055500050,0.0 geom bv_1 bv_2 bv_2	Ę
	bv_2 a3 0.0,0.0,500.0 bv_1 Unit/Primitive Cell 140% - Partial Supercell Clear	
	Select Table Remove Selected Save	
	Atoms ingth (Ă)/ Angle [[mdyn/Ă]/ [mcrequency (1	/c
	Mouse Butt & Ka Si	
PuMII >	Great Close About	•

The PyMOL window shows the graphene primitive cell having two carbon atoms (with larger radii) and other carbon atoms belong to neighboring unit cells.

To do local vibrational mode analysis of CC bonds in this structure, click the **Bond** button in the LModeA-nano window. The interactive wizard may ask for the selection of the first atom of a bond

Click the left carbon atom in the primitive cell, the wizard prompts the selection of the second atom of a bond

Click the right carbon atom in the primitive cell, the wizard prompts clicking **Done** button in the wizard menu on the right-hand-side.

Afterwards, the local mode analysis result for this CC bond is shown in the table region of the LModeA-nano GUI window.

all Bond selected, please click "Done" button. bv bv	. A m title 1/1 A 1 A .2 A	SH SH SH	
	_2_b H _1_b A percell title A	S H S H S H	L L L C
	ile) <mark>A</mark>	SH	L
Bon	nd Selection Wiz	ard	_
Don Clo	ne Dse		

	Atoms	Length (Å)/ Angle (°)	Force constant [mdyn/Å]/ [mdyn·Å/rad^2])	Frequency (1/cm)	Comments
1	C2-C1	1.4284	9.137	1607	

Users are encouraged to try to select a different CC bond in this example for local mode analysis, the result is expected to be the same as for C1-C2 due to symmetry in graphene structure.

1.3.2 Ethane calculated by Gaussian 16

In the LModeA-nano-main/quickstart/ethane directory, a formatted checkpoint file ethane-pbe.fchk was generated by the vibrational analysis (freq) calculation in Gaussian 16 package.

For this type of input data file, it can be directly loaded to LModeA-nano.

Following these steps

- open a new PyMOL window and launch LModeA-nano by clicking Plugin \rightarrow LModeA-nano
- click the ... (Browse) button and select the ethane-pbe.fchk file
- change the program drop-down list from VASP to Gaussian/Q-Chem
- click Load
- change **Dimensions** to **0** and click **Confirm** button

We will see the following

By selecting the CC bond for local mode analysis, the result is

😣 – + PyMOL		×	LModeA-nano	
File Edit Build Movie Display Setting Scene Mouse GL VERSION: 4.6 (Compatibility Profile) Mesa 21.2.2 Detected 6 CPU cores. Enabled multithreaded rendering.	Wizard Plugin Help Reset Zoom Orier Unpick Deselect F	Local i	Vibrational Mode A n Solids and Molect	Analysis ules
Setting- Warning: antialias shader is not supported in Open- Source version of PyMOL	<StopPlayBuilderProperti	Input File (ethane/e	thane-pbe.fchk	Gaussian/Q-Cl -
PyMOL>	•	Lattice Vector (Å)	Dimensions 0	 ▼ Confirm
	all	al	please clear here	
	geom title	a2	and	
		a3	float numbers sepa	arated by space or ","
		Unit/Primitive Cell	110% - Partia	al Supercell Clear
	Mouse Mode Buttons L & Shife +BE Stri Mov CtSh Sel Sngilik *-7 Dbilik Mer	Select Angle	(Å)/ Angle [mdyn,	Selected Save
PoMOL>	Selecting F State 1/	Close		About
Atoms Length $(\hat{\lambda})/(Angle (\circ))$ Force const	ant [mdyn/Å]/ [mdy	$p_{\rm h}/r_{\rm r} d_{\rm c} = 1$ Fi	requency (1/cm) Comments

	Atoms	Length (Å)/ Angle (°)	Force constant [mdyn/Å]/ [mdyn·Å/rad^2])	Frequency (1/cm)	Comments
1	C5-C1	1.531	4.075	1073	

1.4 Prerequisite Knowledge

When using LModeA-nano, you are expected to know

- some basics about PyMOL
- how to conduct structure optimization and vibrational frequency calculations with solid-state modeling packages (e.g. VASP) or/and quantum chemistry modeling packages (e.g. Gaussian)
- · general idea of the local vibrational mode theory
- some basics about Phonopy package

1.5 Local Vibrational Mode Theory

The *local vibrational mode theory* was originally developed by Konkoli and Cremer in 1998 [1-4] and it describes the theoretical *adiabatic internal modes* (later known as *local vibrational modes*) derived from the experimentally measurable *normal vibrational modes* [5] in molecular structures by solving the mass-decoupled Euler–Lagrange equations.

A local vibrational mode associated with an internal coordinate parameter q_n is defined as the infinitesimal displacement of this internal coordinate, followed by the relaxation of all other atoms in this molecular structure.

Like normal vibrational modes having their corresponding frequencies and force constants, a local vibrational mode has its local mode force constant k_n^a (also known as *relaxed force constant*) and frequency ω_n^a . For the local vibrational mode associated with a bond length, the local mode force constant corresponds to the *local stretching force constant* describes the intrinsic strength of this chemical bond of interest. k_n^a as a unique measure of bond strength as an

alternative to the bond (dissociation) energy of covalent bond or binding energy of non-covalent interaction has its advantages over the latter bond strength measure.

In 2019, the *local vibrational mode theory* was extended from molecular systems to periodic systems of one through three dimensions (1-3D) in periodicity [6]. The local vibrational mode associated with an internal coordinate q_n is defined as the vibration driven by this internal coordinate in all primitive cells while relaxing all other parts of the periodic system. This theoretical extension enables the quantification of chemical bond strengths in solids and molecules in a head-to-head fashion.

So far, the local vibrational mode theory as a powerful tool has been applied to study both covalent bonds and noncovalent interactions including hydrogen, halogen, pnicogen, chalcogen and tetrel bonding. Interested readers may check a review article by Kraka *et al.* [7].

Necessary input information needed for calculating the local vibrational modes in molecules or solids includes

- optimized molecular structure or primitive cell structure
- · Hessian matrix corresponding to the optimized structure

Hessian matrix collecting the second-order energy derivatives with regard to Cartesian coordinates is necessary for vibrational frequency calculations in molecules and solids.

Next, tutorials will be given on how to use LModeA-nano with the input data generated by *solid-state* and *quantum chemistry* modeling packages.

References

- 26. Konkoli, D. Cremer, A New Way of Analyzing Vibrational Spectra. I. Derivation of Adiabatic Internal Modes, Int. J. Quantum Chem. 67, 1 (1998)
- 2. 26. Konkoli, J. A. Larsson, D. Cremer, A New Way of Analyzing Vibrational Spectra. II. Comparison of Internal Mode Frequencies, Int. J. Quantum Chem. 67, 11 (1998)
- Konkoli, D. Cremer, A New Way of Analyzing Vibrational Spectra. III. Characterization of Normal Vibrational Modes in terms of Internal Vibrational Modes, Int. J. Quantum Chem. 67, 29 (1998)
- 26. Konkoli, J. A. Larsson, D. Cremer, A New Way of Analyzing Vibrational Spectra. IV. Application and Testing of Adiabatic Modes within the Concept of the Characterization of Normal Modes, Int. J. Quantum Chem. 67, 41 (1998)
- E. B. Wilson, J. C. Decius, P. C. Cross, Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra, Dover Publications: Mineola, NY (2012)
- Y. Tao, W. Zou, D. Sethio, et al., In Situ Measure of Intrinsic Bond Strength in Crystalline Structures: Local Vibrational Mode Theory for Periodic Systems, J. Chem. Theory Comput. 15, 1761 (2019)
- E. Kraka, W. Zou, Y. Tao, Decoding Chemical Information from Vibrational Spectroscopy Data: Local Vibrational Mode Theory, WIREs: Comput. Mol. Sci. 10, e1480 (2020)

1.6 Solid-state Modeling Packages

To obtain the Hessian matrix from some solid-state modeling packages, the latest version of Phonopy package needs to be installed first.

Note: Although the following examples are on the calculation of solid systems with different solid-state modeling packages, this does not mean that molecular systems calculated by these packages cannot be analyzed by LModeAnano.

In fact, molecular systems calculated by solid-state modeling packages can be analyzed in the same way as solids except that the **Dimensions** needs to be set to 0 in LModeA-nano.

1.6.1 VASP

Tested with VASP 5.4.4.

Method 1

The first step is cell optimization. For 3D solid system, an example INCAR file is

```
PREC = Accurate
     GGA = MK
LUSE_VDW = .TRUE.
   PARM1 = 0.1234
  PARM2 = 0.711357
   Zab_vdW = -1.8867
   AGGAC = 0.000
  LASPH = .TRUE.
  IBRION = 1
     NSW = 3000
  NELMIN = 5
   ISIF = 3
  ENCUT = 1000.000000
  EDIFF = 1.000000e-08
  EDIFFG = -1.000000e-08
  ISMEAR = 0
   SIGMA = 0.1
   IALGO = 38
  LREAL = .FALSE.
 ADDGRID = .TRUE.
   LWAVE = .FALSE.
  LCHARG = .FALSE.
    NPAR = 4
```

After the cell optimization (ISIF=3) of a 3D solid structure, the vibrational analysis with VASP needs to be performed. An example INCAR file for vibrational analysis is

```
PREC = Accurate
     GGA = MK
LUSE_VDW = .TRUE.
  PARM1 = 0.1234
  PARM2 = 0.711357
   Zab_vdW = -1.8867
   AGGAC = 0.000
  LASPH = .TRUE.
  IBRION = 5
  NFREE=2
  POTIM=0.005
  NELMIN = 5
    ISIF = 3
  ENCUT = 1000.000000
  EDIFF = 1.000000e-08
  EDIFFG = -1.000000e-08
  ISMEAR = 0
   SIGMA = 1.000000e-02
   IALGO = 38
  LREAL = .FALSE.
 ADDGRID = .TRUE.
  LWAVE = .FALSE.
  LCHARG = .FALSE.
```

The most critical parameters are

- IBRION=5 finite difference method to calculate the Hessian matrix without considering symmetry
- NFREE=2 use central differences
- POTIM=0.005 step size for finite difference in Å

When the vibrational analysis calculation is done, check the lowest frequencies by

\$ grep cm	OUTCAR tail -n 6	5			
115 f =	0.899811 THz	5.653679 2PiTHz	30.014464 cm-1	3.721321 meV	
116 f =	0.729527 THz	4.583752 2PiTHz	24.334394 cm-1	3.017081 meV	
117 f =	0.483556 THz	3.038272 2PiTHz	16.129693 cm-1	1.999828 meV	
118 f/i=	0.013493 THz	0.084780 2PiTHz	0.450086 cm-1	0.055804 meV	
119 f/i=	0.036011 THz	0.226262 2PiTHz	1.201188 cm-1	0.148928 meV	
120 f/i=	0.056606 THz	0.355667 2PiTHz	1.888177 cm-1	0.234104 meV	

Such result shows that the optimization is successful because the last three frequencies (close to zero cm⁻¹) correspond to the translation modes of the whole primitive unit cell and the remaining frequencies are all positive.

In the same directory of OUTCAR, another output file vasprun.xml is also generated. Run:

```
$ phonopy --fc vasprun.xml
...
FORCE_CONSTANTS has been created from vasprun.xml.
...
```

Two files are needed for later use

- POSCAR input structure for vibrational analysis calculation
- FORCE_CONSTANTS Hessian matrix extracted by Phonopy from .xml file

Compose an input file vasp.inp for LModeA-nano

@VASP POSCON = POSCAR FCPHONOPY = FORCE_CONSTANTS

Following these steps

- open a new PyMOL window and launch LModeA-nano by clicking Plugin \rightarrow LModeA-nano
- click the ... (Browse) button and select the vasp.inp file
- · click Load
- change Dimensions to 3 and click Confirm button
- change the supercell size percentage from 110% to 140% or other values, and click Partial Supercell button

Then local mode analysis can be performed as described in quickstart examples.

Method 2 - For large cells

For primitive unit cells having more than 70 atoms, the calculation of Hessian matrix by finite difference method can be time-consuming because it requires 6N force evaluation steps (N is number of atoms in the cell). The above *Method 1* performs all force evaluations on a single computational node. If there is a computational cluster, the following method is faster because it may distribute the force evaluations to different nodes.

After the cell optimization (ISIF=3) of a 3D solid structure, save the CONTCAR file as POSCAR in a new directory.

Run Phonopy

```
$ phonopy -d --dim="1 1 1" --pm --amplitude 0.005
...
Creating displacements
Plus Minus displacement: full plus minus directions
Settings:
Supercell: [1 1 1]
...
```

A series of displaced unit cell structure are generated: POSCAR-001, POSCAR-002, Each structrue will have its forces evaluated in a single VASP calculation.

The INCAR file for force evaluation can look like

```
PREC = Accurate

GGA = MK

LUSE_VDW = .TRUE.

PARM1 = 0.1234

PARM2 = 0.711357

Zab_vdW = -1.8867

AGGAC = 0.000

LASPH = .TRUE.
```

```
IBRION = -1
NELMIN = 5
ISIF = 3
ENCUT = 1000.000000
EDIFF = 1.0000000e-08
EDIFFG = -1.0000000e-08
ISMEAR = 0
SIGMA = 1.000000e-02
IALGO = 38
LREAL = .FALSE.
ADDGRID = .TRUE.
LWAVE = .FALSE.
LCHARG = .FALSE.
```

It is recommended to create a separate directory for each structure

```
for id in POSCAR-*
do
    mkdir disp-${id}
    cp ${id} disp-${id}/POSCAR
    cp POTCAR KPOINTS INCAR disp-${id}/
done
```

When submitting the VASP calculations, each computational node can handle a few structures, like

```
for i in $(seq -f "%03g" 1 100)
do
    echo disp-POSCAR-${i}
    cd disp-POSCAR-${i}
    vasp_std > vasp-${i}.out
    cd ..
done
```

seq -f "%03g" 1 100 means to loop over 001 to 100.

After the force evaluation of all displaced structures are finished, create FORCE_SET using Phonopy

\$ phonopy -f disp-POSCAR-{001..xxx}/vasprun.xml

xxx is the total number of displaced structures

Then use Phonopy to create FORCE_CONSTANTS file

\$ phonopy --dim="1 1 1" --writefc

With POSCAR and FORCE_CONSTANTS files, the local mode analysis can be performed with LModeA-nano like in *Method 1*.

1.6.2 CP2K

Tested with CP2K 8.2. The input file template can be generated by Multiwfn package.

Method 1

The input file for cell optimization of 3D solid is like

```
#Generated by Multiwfn
&GLOBAL
  PROJECT k2reh9-refine
  PRINT_LEVEL LOW
  RUN_TYPE CELL_OPT
&END GLOBAL
&FORCE_EVAL
  METHOD Quickstep
  &SUBSYS
    &CELL
      А
            9.691
                      0.000
                                 0.000
      В
           -4.810
                      8.413
                                 0.000
      С
            0.000
                      0.000
                                 5.706
      PERIODIC XYZ #Direction of applied PBC (geometry aspect)
    &END CELL
    &COORD
 Κ
           -1.2558488724
                                 2.2006561653
                                                      2.8528315416
 Κ
            3.6056710442
                                 6.2147826995
                                                      2.8528315383
 Κ
            2.5337691322
                                 0.0019792003
                                                      2.8528315571
 Κ
           -2.8321552830
                                 4.9560287939
                                                      0.000000311
 Κ
            2.0066157818
                                 3.4586295569
                                                     -0.000000269
 Κ
            5.7081521839
                                 0.0010789324
                                                      0.000000278
Re
            4.8571785554
                                 2.8039248183
                                                      2.8528315499
Re
            0.0234382187
                                 5.6083829765
                                                      2.8528315526
           -0.0000638786
                                -0.0001099606
                                                     -0.000000055
Re
 Н
            6.0270652495
                                 2.5945198607
                                                      4.0766192575
 Н
            4.4539534701
                                 3.9229323799
                                                      4.0757259845
 Н
            4.0894727226
                                 1.8947602744
                                                      4.0751317071
 Н
                                                      1.6305327076
           -0.3848103609
                                 4.4906671571
 Н
            4.0894727162
                                 1.8947602632
                                                      1.6305314009
 Н
            6.0270652713
                                 2.5945198686
                                                      1.6290438503
 Н
            4.4539534568
                                 3.9229323662
                                                      1.6299370985
 Н
           -0.7389977868
                                 6.5200724154
                                                      4.0766186544
 Η
            1.1950192311
                                 5.8137176574
                                                      4.0757278734
 Η
                                -0.0039857278
                                                     -0.000000099
            1.6781788362
 Η
            4.0388741329
                                 6.9614774107
                                                     -0.000000006
 Н
           -0.8363820802
                                 1.4549103043
                                                     -0.0000000041
 Η
            8.4818032881
                                 0.0022916350
                                                      1.1978086117
 Н
                                 1.0465002108
            0.6071583592
                                                      4.5092456422
 Η
           -4.2077347386
                                 7.3645633109
                                                      4.5078562001
 Η
           -4.2077347299
                                 7.3645632719
                                                      1.1978068819
  Н
            0.6071583649
                                 1.0465001732
                                                      1.1964174406
 Н
            8.4818032732
                                 0.0022916783
                                                      4.5078544943
 Н
           -1.6284528162
                                 5.3254766136
                                                      2.8528315589
```

				(continued from previous page)
Н	0.6034005602	7.1805921593	2.8528315404	
Н	1.0952417964	4.3204237909	2.8528315625	
Н	3.2070901557	3.0951493757	2.8528315485	
Н	5.9342251097	4.0877344629	2.8528315420	
Н	5.4314516435	1.2294438796	2.8528315643	
Н	-0.3848103509	4.4906671776	4.0751304240	
Н	-0.7389977923	6.5200723974	1.6290444364	
Н	1.1950192243	5.8137176406	1.6299352197	
	&END COORD			
	&KIND K			
	ELEMENT K			
	BASIS_SET DZVP-MOLOPT-SE	₹-GTH		
	POTENTIAL GTH-PBE			
	&END KIND			
	&KIND Re			
	ELEMENT Re			
	BASIS_SET DZVP-MOLOPT-SE	≀–GTH		
	POTENTIAL GTH-PBE			
	&END KIND			
	&KIND H			
	ELEMENT H			
	BASIS_SET DZVP-MOLOPT-SP	₹–GTH		
	POTENTIAL GTH-PBE			
	&END KIND			
&	END SUBSYS			
&I	DFT BASIS_SET_FILE_NAME BASIS POTENTIAL_FILE_NAME POTEN WFN_RESTART_FILE_NAME k2re CHARGE 0 #Net charge MULTIPLICITY 1 #Spin mu	S_MOLOPT ITIAL 2h9-opt-RESTART.wfi 1ltiplicity	n	
	&KPOINTS			
	SCHEME MONKHORST-PACK	5 8		
	SYMMETRY F #If using syn	nmetry to reduce th	he number of k-points	
	&END KPOINTS			
	&QS			
	EPS_DEFAULT 1E-10 #This	is default. Set a	ll EPS_xxx to values :	such that the energy
$\hookrightarrow W$	ill be correct up to this w	ralue		
	&END QS			
	&POISSON			
	PERIODIC XYZ #Direction	(s) of PBC for cal	culating electrostatio	CS
	PSOLVER PERIODIC #Ine Wa	ly to solve Polsson	n equation	
	AEND POISSON			
	WAC EUNCTIONAL DDE			
	AC_FUNCTIONAL PBE			
	OPDE DADAMETDIZATION DEVI	DE		
	PARAMEIRIZATION REVE	DL		
	QEND YE EINCTIONAL			
	ALIND ACTONCITONAL			

```
CUTOFF 825
      REL_CUTOFF 75
   &END MGRID
   &SCF
      MAX_SCF 128
      EPS_SCF 1.0E-06 #Convergence threshold of density matrix during SCF
      SCF_GUESS RESTART #Use wavefunction from WFN_RESTART_FILE_NAME file as initial.
#
→guess
      &DIAGONALIZATION
        ALGORITHM STANDARD #Algorithm for diagonalization. DAVIDSON is faster for large.
→systems
      &END DIAGONALIZATION
      &MIXING #How to mix old and new density matrices
        METHOD BROYDEN_MIXING #PULAY_MIXING is also a good alternative
        ALPHA 0.4 #Default. Mixing 40% of new density matrix with the old one
       NBROYDEN 8 #Default is 4. Number of previous steps stored for the actual mixing.
\rightarrow scheme
      &END MIXING
      &PRINT
        &RESTART #Use "&RESTART OFF" can prevent generating wfn file
          BACKUP_COPIES 0 #Maximum number of backup copies of wfn file
        &END RESTART
      &END PRINT
   &END SCF
  &END DFT
  STRESS_TENSOR ANALYTICAL
&END FORCE_EVAL
&MOTION
  &CELL_OPT
   MAX_ITER 250 #Maximum number of geometry optimization
   EXTERNAL_PRESSURE 1.01325 #External pressure for cell optimization (bar)
   CONSTRAINT NONE #Can be e.g. Z, XY to fix corresponding cell length
   KEEP_ANGLES F #If T, then cell angles will be kepted
   KEEP_SYMMETRY F #If T, crystal symmetry will be kepted, and symmetry should be.
→ specified in &CELL
   TYPE DIRECT_CELL_OPT #Geometry and cell are optimized at the same time. Can also be_
\hookrightarrow GEO_OPT, MD
    #The following thresholds of optimization convergence are the default ones
   MAX_DR 0.000060 #Maximum geometry change
   RMS_DR 0.000040 #RMS geometry change
   MAX_FORCE 0.000015 #Maximum force
   RMS_FORCE 0.000010 #RMS force
   PRESSURE_TOLERANCE 100 #Pressure tolerance (w.r.t EXTERNAL_PRESSURE)
   OPTIMIZER BFGS #Can also be CG (more robust for difficult cases) or LBFGS
   &BFGS
      TRUST_RADIUS 0.2 #Trust radius (maximum stepsize) in Angstrom
      RESTART_HESSIAN T #If read initial Hessian, uncomment this line and specify the.
#
\rightarrow file in the next line
      RESTART_FILE_NAME to_be_specified
    &END BFGS
  &END CELL OPT
```

```
&PRINT

&RESTART

BACKUP_COPIES 0 #Maximum number of backing up restart file

&END RESTART

&RESTART_HISTORY

&EACH

CELL_OPT 0 #How often a history .restart file is generated, 0 means never

&END EACH

&END RESTART_HISTORY

&CELL

&END CELL

&END CELL

&END PRINT

&END MOTION
```

With the optimized cell structure, the vibrational analysis is required

```
#Generated by Multiwfn
&GLOBAL
 PROJECT k2-refine-freq
  PRINT_LEVEL MEDIUM
  RUN_TYPE VIBRATIONAL_ANALYSIS
&END GLOBAL
&FORCE_EVAL
 METHOD Quickstep
  &SUBSYS
   &CELL
                                0.0000000000
                                                     0.0000000000
      Α
            9.7154601050
      В
           -4.8583032251
                                8.4134784197
                                                     0.0000000000
      С
            -0.0000048135
                                -0.0000078762
                                                      5.6945465926
      PERIODIC XYZ #Direction of applied PBC (geometry aspect)
   &END CELL
   &COORD
 Κ
           -1.2717444316
                                2.2034502965
                                                     2.8470104286
 Κ
            3.5860479359
                                6.2116264326
                                                     2.8470414297
 Κ
            2.5441673793
                                0.0005069845
                                                     2.8470105500
 Κ
           -2.8664982103
                                4.9640103204
                                                    -0.0002691372
 Κ
            1.9919809386
                                3.4504437696
                                                    -0.0002481916
 Κ
                                                    -0.0002691208
            5.7322486247
                               -0.0000606935
Re
            4.8578753089
                                2.8054541385
                                                    2.8470302019
            0.0003345425
                                5.6097335267
                                                     2.8470301311
Re
Re
            0.0003406364
                                0.0005363186
                                                    -0.0002407693
            6.0318408651
                                2.6225498479
                                                     4.0708725666
 Н
 Η
            4.4291201342
                                3.9136919383
                                                     4.0706909878
 Η
            4.1125879533
                                1.8801461820
                                                     4.0708571241
 Н
           -0.4282825066
                                4.5016125249
                                                     1.6232100820
 Η
            4.1125863706
                                                     1.6232012617
                                1.8801513315
 Η
            6.0318388962
                                2.6225540649
                                                     1.6231796732
 Н
            4.4291142103
                                3.9136997301
                                                     1.6233758117
 Η
           -0.7451026988
                                6.5349089400
                                                     4.0708601931
```

Н	1.1744732842	5,7926227251	4.0707068918	
Н	1.6786597913	0.0005874087	-0.0002624812	
Н	4.0184027906	6.9605294583	-0.0002696641	
Н	-0.8388731978	1.4539493631	-0.0002624278	
Н	8.5073111255	0.0005134857	1.1978276666	
Н	0.6045199441	1.0470807705	4.4961739186	
Н	-4.2536730257	7.3674658865	4.4962388277	
Н	-4.2536811640	7.3674669181	1.1978123072	
Н	0.6045200337	1.0470806825	1.1978988291	
Н	8.5073057336	0.0005201478	4.4962231782	
Н	-1.6564785794	5.3554871447	2.8470329264	
Н	0.6084571955	7.1717438292	2.8470366227	
Н	1.0487876716	4.3019244622	2.8470389912	
Н	3.2010232060	3.0594336945	2.8470390703	
Н	5.9064519076	4.1131982559	2.8470367529	
Н	5.4661799457	1.2435429741	2.8470328975	
Н	-0.4282878791	4.5016116953	4.0708480056	
Н	-0.7450971903	6.5349082052	1.6231930653	
Н	1.1744841476	5.7926214329	1.6233587569	
	&END COORD			
	&KIND K			
	ELEMENT K			
	BASIS_SET DZVP-MOLOPT-S	R-GTH		
	POTENTIAL GTH-PBE			
	&END KIND			
	&KIND Re			
	ELEMENT Re			
	BASIS_SET DZVP-MOLOPT-S	SR-GTH		
	POTENTIAL GTH-PBE			
	&END KIND			
	&KIND H			
	ELEMENT H			
	BASIS_SET DZVP-MOLOPT-S	R-GTH		
	POTENTIAL GTH-PBE			
	&END KIND			
&E	ND SOBSIS			
0 5	\ T -T			
Ø.	11 DACTO CET ETLE NAME DACT			
	BASIS_SEI_FILE_NAME BASI	S_MOLOPI		
#	VEN DESTADT ETLE NAME 1-2	INIIAL	ADT uto	
#	CHARCE O #Not charge	fileq-template-KESI.	AKI.WIII	
	CHARGE 0 #Net Charge]+;,,];,;;+		
	AVDOINTS	ιαττιριτειτγ		
	SCUEME MONVUODST DACK	5 5 9		
	SUMMETRY E #If using su	JJJO mmetry to reduce t	he number of k-noints	
	&FND KPOINTS	numetry to reduce th	ne number of k points	
	LOS			
	FPS DFFAIIIT 1F-10 #Thic	is default Set a	11 FPS xxx to values such th	hat the energy
6 W 1	11 be correct up to this	value		iat the chergy
<u>→ vv ⊥</u>	&FND OS	VULUC		
	&POISSON			

```
PERIODIC XYZ #Direction(s) of PBC for calculating electrostatics
      PSOLVER PERIODIC #The way to solve Poisson equation
   &END POISSON
   &XC
      &XC_FUNCTIONAL PBE
        &PBE
          PARAMETRIZATION REVPBE
        &END PBE
      &END XC_FUNCTIONAL
   &END XC
   &MGRTD
     CUTOFF 825
      REL_CUTOFF 75
   &END MGRID
   &SCF
      MAX SCF 128
      EPS_SCF 1.0E-07 #Convergence threshold of density matrix during SCF
#
      SCF_GUESS RESTART #Use wavefunction from WFN_RESTART_FILE_NAME file as initial.
→guess
      &DIAGONALIZATION
        ALGORITHM STANDARD #Algorithm for diagonalization. DAVIDSON is faster for large.
→systems
      &END DIAGONALIZATION
      &MIXING #How to mix old and new density matrices
        METHOD BROYDEN_MIXING #PULAY_MIXING is also a good alternative
        ALPHA 0.4 #Default. Mixing 40% of new density matrix with the old one
       NBROYDEN 8 #Default is 4. Number of previous steps stored for the actual mixing.
\rightarrow scheme
      &END MIXING
   &END SCF
   &PRINT
      &MOMENTS
      &END MOMENTS
   &END PRINT
  &END DFT
&END FORCE_EVAL
&MOTION
  &PRINT
   &RESTART
      BACKUP_COPIES 0 #Maximum number of backing up restart file
    &END RESTART
  &END PRINT
&END MOTION
&VIBRATIONAL ANALYSIS
 DX 0.008 #Step size of finite difference. This is default (Bohr)
  NPROC_REP 1 #Number of processors to be used per replica. This is default
  TC_PRESSURE 101325 #1 atm. Pressure for calculate thermodynamic data (Pa)
  TC_TEMPERATURE 298.15 #Temperature for calculate thermodynamic data (K)
  THERMOCHEMISTRY #Print thermochemistry information (only correct for gas molecule!)
  INTENSITIES F #Calculate IR intensities
  &PRINT
```

```
&HESSIAN high
&END HESSIAN
&MOLDEN_VIB #Output .mol (Molden file) for visualization vibrational modes
&END MOLDEN_VIB
&END PRINT
&END VIBRATIONAL_ANALYSIS
```

Critical parameters include

- DX 0.008 this specifies the step size of finite difference
- HESSIAN high this prints the Hessian matrix in the CP2K output file

After the vibrational analysis is done, check the vibrational frequency values to make sure the structure is at a local minimum energetically.

Compose an input file cp2k.inp for LModeA-nano

```
@cp2k
mode = native
OUTPUT = k2reh9-refine-freq.log
INPUT = k2reh9-refine-freq.inp
```

The INPUT and OUTPUT specify the input and output files of vibrational analysis calculation.

Follow these steps to perform local mode analysis with LModeA-nano

- open a new PyMOL window and launch LModeA-nano by clicking Plugin \rightarrow LModeA-nano
- click the ... (Browse) button and select the cp2k.inp file
- change the program drop-down list from VASP to CP2K
- click Load
- change Dimensions to 3 and click Confirm button
- change the supercell size percentage from 110% to 140% or other values, and click Partial Supercell button

Then local mode analysis can be performed as described in *quickstart examples*.

Method 2 - For large cells

Similar to *Method 2 with VASP*, the general idea of this method is ask Phonopy package to generate the CP2K input files for the displaced structures starting from an already optimized structure. Then force evaluations are performed on these displaced structures in order to obtain Hessian.

A template CP2K input file having the optimized cell structure is needed, and the format of this input should look like the following. Otherwise, Phonopy package cannot parse it correctly. More examples of such CP2K input can be found in the Phonopy repo on GitHub: NaCl and Si.

```
! whether to do kpoints or not
! without kpoints it will be significantly faster,
! but some crossings in the band structure will be missing
@SET WITH_KP yes
```

! set the following to yes to do a cell optimization instead of energy/force calculation (continues on next page)

```
! do NOT enable this when using this input file as template for phonopy!
@SET DO_CELLOPT no
&GLOBAL
@IF $DO_CELLOPT == yes
   PROJECT solid-cellopt
  RUN_TYPE CELL_OPT
@ENDIF
@IF $DO_CELLOPT == no
  PROJECT na2reh9-phonopy
  RUN_TYPE ENERGY_FORCE
@ENDIF
  PRINT_LEVEL MEDIUM
&END GLOBAL
&FORCE EVAL
  METHOD Quickstep
  &DFT
      BASIS_SET_FILE_NAME BASIS_MOLOPT
      POTENTIAL_FILE_NAME POTENTIAL
      &QS
         EPS_DEFAULT 1e-10
         ! We are using GAPW instead of the default GPW to prevent numerical
         ! noise due to the finite grid size in the integration schemes in CP2K
         ! together with the small displacements used to determine the forces.
         ! Alternatively one could increase the CUTOFF to >5000 (depends on basis set)
         ! to ensure that the higher exponents in the basis sets are well represented on.
\rightarrow the grid.
      &END QS
      &POISSON
         PERIODIC XYZ
         PSOLVER PERIODIC
      &END POISSON
      &SCF
         EPS_SCF 1e-07
         MAX_SCF 80
         &DIAGONALIZATION
            ALGORITHM STANDARD
         &END DIAGONALIZATION
         &MIXING #How to mix old and new density matrices
           METHOD BROYDEN_MIXING #PULAY_MIXING is also a good alternative
           ALPHA 0.4 #Default. Mixing 40% of new density matrix with the old one
           NBROYDEN 8 #Default is 4. Number of previous steps stored for the actual.
→mixing scheme
         &END MIXING
      &END SCF
@IF $WITH_KP == yes
```

SCHEME MONKHORST-PACK 5 5 8 SYMMETRY .FALSE. @ENDIF &XC &XC_FUNCTIONAL PBE &GEND FE PARAMETRIZATION REVPBE &GEND FE &GEND FE &GEND XC &MGRID REL_CUTOFF 80 CUTOFF 900 &GEND MCRID &GEND DFT &SUBSYS &CELL A 8.8901326513 0.000900000 0.000000000 B -4.4739104629 7.6824375325 0.0000000000 C 0.0000000000 0.000000000 B -4.4739104629 7.6824375325 0.0000000000 C 0.0000001000 0.00000003943 5.2483716421 PERIODIC XYZ &GEND CELL &CCORD Na -1.1859069865 2.0379623261 2.6241867266 Na 2.3578700048 0.000792838 2.6241867266 Na 2.455486318 4.5068346666 0.0000001576 Na 5.2158593380 -0.00093133 2.6241867266 Na 1.625169178 3.175073054 0.0000001575 Na 5.2158593380 -0.000311105 0.0000001575 Na 5.2158593380 -0.003911105 0.0000001575 Na 5.2158593384 5.1242663051 2.6242178317 Re 4.0504745384 5.1242663051 2.6242178317 Re 4.0504745784 1.5754447521 3.644452139 Re 4.35645657 2.564286825 2.6242178317 Re 4.0604717475 0.003911105 0.0000001575 Na 5.2158593380 -1.003911105 0.00000001575 Na 5.2158593386 7.2.4929720119 3.8444638123 H 3.0952360019 3.622613245 3.642723135 H 3.784631942 1.5754147357 3.64273345116 H -0.57316713 5.113446437 3.4447234155 H 3.784631942 1.5754142357 3.642723155 H 3.784631942 1.5754142357 3.642723155 H 3.784631942 1.5754142357 3.6427233155 H 3.784631942 1.5754142357 3.6427233155 H 3.784631942 1.5754142357 3.6427233155 H 3.784631942 1.5754142357 3.64272335416 H -0.673116713 5.113446437 3.444723455 H 3.784631942 1.5754142357 3.64272335451 H 3.784631942 1.5754142357 3.64272335451 H 3.784631942 1.5754142357 3.64272335451 H 3.784631942 1.5754142357 3.64272335451 H 3.784631942 1.5754142357 3.64272355 H 3.78463195378 1.1421653 H 3.7845335451 1.401076153 H 3.7845335451 1.401076153 H 3.7845335451 1.401076153 H 3.7845335451 1.401076153 H 3.7845335451 1.401076153 H 3.7845335450 1.452415933 H 4.0000016665 H 7.6815358935 0.00008872303 1.1958253823 H 0.00080826414 1.0053990468 H -0.635161749 0.05351814 4.055559576		&KI	POINTS			
SYMMETRY FALSE. &ENDIF &XC &XC_FUNCTIONAL PBE &PRE PARAMETRIZATION REVPBE &END XC_FUNCTIONAL &END XC_FUNCTIONAL &END XC &MGRID REL_CUTOFF 80 &END XC &MGRID REL_CUTOFF 900 &END DFT &SUBSYS &CCLL A 8.8901326513 0.000000000 0.0000000000 B -4.4739104629 7.6824375325 0.0000000000 C 0.0000000000 0.0000000943 5.2483716421 PERIODIC XYZ &END CELL &COORD Na -1.1859069865 2.0379623261 2.6241865010 Na 2.3578700048 0.000792838 2.6241867646 Na 3.2449119045 5.6448521398 2.624186726 Na -2.6256486318 4.506334666 0.0000001680 Na 1.8251693178 3.1759730554 0.000001576 Na -5.215893380 -0.000923139 0.0000001576 Na 5.215893380 -0.000923139 0.0000001576 Na 5.215893380 -0.000921319 0.0000001576 Na 5.215893380 -0.000921319 0.0000001576 Na 5.2258457 2.5642868258 2.6242178317 Re -0.0167457384 5.1242663051 2.6242177424 Re 0.00171747 0.033111053 0.0000994522 H 3.7846319842 1.5754147357 3.8473354516 H -0.5432225121 4.0633716149 1.401076130 H 3.7846319842 1.5754147357 3.8473354516 H -0.5432225121 4.0633716149 1.401076130 H 3.7846319842 1.5754147357 3.8473354516 H -0.5432225121 4.0633716149 3.8444638123 H 3.7846319842 1.5754147357 3.8473354516 H -0.6751167153 6.1130464337 3.844473455 H 3.7846319842 1.5754147357 3.8473354516 H -0.6751167153 6.1130464337 3.844473455 H 3.7846319842 1.5754147357 3.8473354516 H -0.6751167153 6.1130464337 3.8447247704 H 1.6763457273 0.00755153 8.0000018990 H 3.5835080375 6.233251218 0.40000018990 H 3.5835080375 6.233251218 0.40000018990 H 3.5835080375 6.233251218 0.40000018990 H 3.5835080375 6.233251218 0.40000018990 H 3.5835080375 6.233251218 0.4000001890 H -0.6751167153 6.1130464337 3.84447247704 H 1.676345729780 0.0006872303 1.1958253823 H 0.000001890001890 H -3.58593508075 6.233251923 0.0000001886 H -0.6330082414 1.0503904668 4.0506195218 H -3.86494720 0.633518149 4.052550576			SCHEME MONKHORST-PA	ACK 5 5 8		
dend kpoints @ENDIF &XC &XC_FUNCTIONAL PBE &FBE PRAMATRIZATION REVPBE &END FEE &END FEE &END FEE &END FEE &END TSE &END XC_FUNCTIONAL &END TSE &END TSE &END FT &SUBSYS &CELL A A &END MGTD REPT &END FT &SUBSYS &CELL A &SUBSYS &CELL A &END DFT &END CELL &COORD Na 3.2449119045 S.2437525 0.0000001670 Na 2.1859069865 2.0379623261 2.6241867764 Na 3.2158933380 0.000001673 Re 0.017170475 0.0001717384 Re			SYMMETRY .FALSE.			
Gendlif &XC &XC_FUNCTIONAL PPE &FPE PARAMETRIZATION REVPBE &GEND TPE &GEND XC_FUNCTIONAL &GEND XC &MGRID REL_CUTOFF 80 CUTOFF 900 &GEND MGRID KELLOTTOFF 80 CUTOFF 900 &GEND MGRID KELLOTTOFF 700 CONSUMMENT A 8.8901326513 0.000000000 B -4.4739104629 7.6824375325 0.000000000 C 0.000000000 C 0.000000000 B -4.4739104629 PERIODIC XYZ 2.6241867646 A 3.2449119045 S.6448521398 2.624186726 Na -1.1859069865 2.0379623261 R -0.016745384 5.124263051 R -0.016745384 2.624186726 Na 5.2158593380 -0.0009231392 0.00000001576 Na 5.2158593380 -0.0009231392 0.0000001		&E1	ND KPOINTS			
&XC &XC_FUNCTIONAL PBE &FPE PARAMETRIZATION REVPBE &END XC &END DFT &SUBSYS &CCLL A 8.9901326513 0.000000000 0.0000000000 0.0000000000 0.0000001000 0.0000001000 0.0000001000 0.0000001000 0.0000001000 0.0007802838 2.6241867646 Na 3.2449119045 5.6448521398 A 4.256486318 4.566346666 0.000001673 Na .215859330 -0.016743884 8 A 8	@ENDI	F				
&XC &XC_FUNCTIONAL PBE &XPPE PARAMETRIZATION REVPBE &END PE &END XC_FUNCTIONAL &END XC &END DFT &SUBSYS &CCLL A 8.8901326513 0.0000000000 B -4.4739104629 7.6824375325 0.00000000000 B -4.4739104629 7.6824375325 0.00000000000 C 0.0000001000 0.0000003943 5.2483716421 PERIODIC XYZ &END CELL &CORD Na -1.1859069865 2.0378700048 0.0007892838 2.624186726 Na 1.2825633178 1.5564363178 1.756730554 0.00000001576 Na <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
&XC_FUNCTIONAL PBE &PBE PARAMETRIZATION REVPBE &END XC_FUNCTIONAL &END XC_ &MGRID REL_CUTOFF 80 CUTOFF 900 &END MGRID &END DFT &SUBSYS &CELL A 8.8901326513 0.000000000 0.000000000 B -4.4739104629 7.6824375325 0.0000000000 C 0.00000001000 0.0000003943 5.2483716421 PERIODIC XYZ &END CELL &COORD Na -1.1859069865 2.0379623261 2.62418659010 Na 3.2449119045 5.6448521398 2.6241867646 Na -2.6256486318 4.59634666 0.0000001680 Na 1.8251693178 3.1750730554 0.0000001680 Na 1.8251693178 3.1750730554 0.0000001680 Na 1.8251693178 3.1750730554 0.0000001680 Na 5.2158593380 -0.0009231392 0.0000001676 Na 5.2158593380 -0.0009231392 0.0000001678 Na 5.2158593380 -1.5424868258 2.6242178317 Re -0.0167453884 5.1242663051 2.6242177424 Re 0.0017170475 0.0030111053 0.0000094252 H 5.6222357877 2.492972019 3.8444638123 H 3.7846337784 1.575414375 3.8472931155 H 3.7846337784 1.575414375 3.8472931155 H 3.7846337784 1.575414375 3.8472931155 H 3.7846337784 1.575414375 3.8472931155 H 3.9052376919 3.623261324 5.38472647704 H 3.0952376919 3.62325121 4.0633761049 1.4010781033 H 3.7846337784 1.575414375 3.8472931155 H 3.905237872 2.492972019 3.8472647704 H 3.905237872 2.492972019 3.8472647704 H 3.905237872 2.492972019 3.8472647704 H 3.905237872 2.492972010 5.198142849 3.8472647704 H 3.905237878 2.492972010 5.198142849 3.8472647704 H 3.905237878 2.492972010 5.198142849 3.8472647704 H 3.6434723455 H 3.905237872 4.492372010 6.0000001868 H 7.66135879 6.0000001868 H 7.66135879 6.0000001868 H 7.66135879 6.0000001868 H 7.66135879 6.0000001868 H 7.66135879 6.0000001868 H 7.6613589956 0.0008872303 1.19525569576		&X(
APBE PARAMETRIZATION REVPBE &END XC &END XC &MCRID REL_CUTOFF 80 CUTOFF 900 &END MGRID KEND XC &SUBSYS &CELL & 8.8901326513 0.0000000000 B -4.4739164629 7.6824375325 C 0.0000001000 0.0000003943 S.2483716421 PERIODIC XYZ &COORD Na -1.1859069865 .2.627878700048 0.00007892838 .2.6241866716 Na -2.625648618 .3.2449119045 5.6448521398 A 3.82578700048 Ma -2.625648618 .18251093178 3.1750730554 Na 5.218593380 -0.0009001680 Na 1.8251093175 Re -0.0167453884 5.1242663051 2.6242177424 Re 0.001774475 0.003111053 H 3.7846337784 1.5754183851 H 3.7844631774 </td <td></td> <td></td> <td>&XC_FUNCTIONAL PBE</td> <td></td> <td></td> <td></td>			&XC_FUNCTIONAL PBE			
PARAMETRIZATION REVPBE &END YC, FUNCTIONAL &END XC &MGRID REL_CUTOFF 80 CUTOFF 900 &END MGRID &END DFT &SUBSYS &CELL A 8.8901326513 0.000000000 0.000000000 B -4.4739104629 7.6824375325 0.0000000000 C 0.000000100 0.0000003943 5.2483716421 PERIODIC XYZ &EEND CELL &COORD Na -1.1859069865 2.0379623261 2.6241869010 Na 3.2449119045 5.6448521398 2.6241867646 Na 2.3578700048 0.0007892838 2.6241867646 Na 2.4521693178 3.1759730554 0.0000001580 Na 1.8251693178 3.1759730554 0.0000001680 Na 1.8251693178 3.1759730554 0.0000001680 Na 1.8251693178 3.1759730554 0.0000001576 Na 5.218859380 -0.0009231392 0.0000001673 Re 4.4364564557 2.5642866258 2.624217424 Re 0.0017170475 0.003011053 0.0000001673 Re 4.436456457 2.564286258 3.6242177424 Re 0.00167453884 5.1242663951 2.6242177424 Re 0.001747547 0.003011053 0.0000004252 H 5.6222385887 2.4929720119 3.8444638123 H 3.9052360919 3.6232613245 3.8472331155 H 3.7846337784 1.5754147357 3.8473354516 H -0.5432325121 4.0633761049 1.4010781033 H 3.7846337784 1.5754147357 3.8473354516 H -0.5432325121 4.0633761049 1.4010781033 H 3.7846337784 1.5754183851 1.40109763160 H -0.5432325121 4.0633761049 1.4010781033 H 3.7846337784 1.5754183851 1.40109763160 H -0.5432325121 4.0633761049 1.4010781033 H 3.7846337784 1.5754183851 1.40109763160 H -0.5432325121 4.0633761049 1.4010781033 H -0.5432325121 4.0633761049 1.4010781033 H -0.673167133 6.1130464337 3.8444234516 H -0.673167133 6.1130464337 3.844723455 H 1.1657297010 5.198142849 3.8472647704 H 1.0673457738 0.00076515368 0.000001665 H -0.837008275 6.2338251923 0.0000016665 H -0.837080375 6.2338251923 0.0000016868 H 7.6815358956 0.0008872303 1.1558253823 H 0.60038026414 1.0503904668 4.0556159576			&PBE			
			PARAMETRIZATION	N REVPBE		
&END XC_FUNCTIONAL &MCRID REL_CUTOFF 80 CUTOFF 900 &END MCRID &END DFT &SUBSYS &CELL A 8.8901326513 0.000000000 0.000000000 B -4.4739104629 C 0.00000000 B -4.4739104629 C 0.00000000 B -4.4739104629 PERIODIC XYZ EEND CELL &COOR 0.000003943 S.2483716421 PERIODIC XYZ &EEND CELL &COOR Na -1.1859069865 C 0.379623261 2.624186726 Na -2.6256486318 4.5068346666 0.0000001673 Re 4.364564557 2.564286258 2.624186726 Na 5.215859380 0.0000001673 Re 0.001717475 0.003011053 0.0000000252 H 5.022235887 2.4929720119 3.8444638123			&END PBE			
&END XC &MGRID REL_CUTOFF 80 CUTOFF 900 &END MCRID &CELL A 8.8901326513 0.000000000 B -4.4739104629 7.6824375325 0.0000000000 C 0.0000000000 C 0.0000000000 A 8.8901326513 &COORD 2.6241867646 Na 2.3578700048 0.0007892838 A 1.4859069365 2.0379623261 Na 1.251693178 3.1759730554 Na 1.251693178 3.1759730554 Na 5.2158593380 -0.00009001876 Na 5.2158593380 -0.0000901576 Na 5.215850919 3.623261245 Re -0.016743884 <t< td=""><td></td><td></td><td>&END XC_FUNCTIONAL</td><td></td><td></td><td></td></t<>			&END XC_FUNCTIONAL			
&MGRID REL_CUTOFF 80 CUTOFF 900 &END MCRID &END DFT &CELL A 8.8901326513 0.000000000 0.000000000 B -4.4739104629 7.6824375325 0.0000000000 C 0.000000000 0.000000000 5.2483716421 PERIODIC XYZ &END CELL &CCORD Na -1.1859069865 2.0379623261 2.6241867646 Na -2.6256486318 4.90007892838 2.624186726 Na -2.62564865318 4.90007892838 2.624186726 Na 1.2551693178 3.1750730554 0.00000001670 Na 5.2158593380 -0.0009231392 0.00000001673 Re -0.0167453884 5.1242663051 2.62421778317 Re -0.017170475 0.003111053 0.00000004252 H 5.622235887 2.4929720819 3.84433123 H 3.9052360919 3.6232613245 3.847233155 H 3.0754143377 3.8447233155 H 3.624233784 <		&E1	ND XC			
REL_CUTOFF 80 CUTOFF 900 &END MCRID &END DFT &SUBSYS &CELL A 8.8901326513 0.000000000 0.000000000 B -4.4739104629 7.6824375325 0.0000000000 C 0.000000100 0.0000003943 5.2483716421 PERIODIC XVZ &END CELL &COORD ACCORD 0.0007822381 2.6241869010 Na 1.1859069865 2.0379623261 2.624186726 Na 2.525646318 4.966846666 0.0000001680 Na 2.3578700048 0.0009231392 0.0000001680 Na 1.8251693178 3.1750730554 0.0000001680 Na 1.8251693178 3.1750730554 0.0000001676 Na 5.215853380 -0.009231392 0.0000001676 Na 5.215853380 -0.009231392 0.0000001676 Na 5.2158593380 -0.009321192 0.0000001676 Na 5.2158587 2.564286258 2.6242178317 Re 4.36454557 2.564286258 2.624217424						
REL_COTOFF 80 &END MGRID &END MGRID &END DFT &SUBSYS &CELL A 8.8901326513 0.000000000 0.000000000 B -4.4733104629 7.6824375325 0.0000000000 C 0.0000001000 0.0000003943 5.2483716421 PERIDDIC XYZ EEND CELL ECOORD 0.00000001680 Na -1.1859069865 2.0379623261 2.6241867646 Na 2.3578700048 0.0007892838 2.6241867766 Na -2.6256486318 4.5068346666 0.0000001673 Re -0.0167453884 5.1242663051 2.6242177424 Re 0.0017170475 0.0030111053 0.00000042522 H 3.9052360919 3.6232613245 3.8472931155 H 3.7846319842 1.5754147357 3.847354516 H 3.7846337784 1.5754183851 1.4010976360 H 3.0952368919 3.6232502016 1.401781033 H 3.9052378288 3.6232592016 1.40199781033 H 3.9052378288 3.6232592016		&M0	JKID			
ACIOPY 900 &END MGRID &END DFT &SUBSYS &CELL A 8.8901326513 0.0000000000 0.0000000000 B -4.4739104629 7.6824375325 0.0000000000 C 0.00000000000 0.0000000000 5.2483716421 PERIODIC XYZ &END CELL &ECOODD Na -1.1859069865 2.0379623261 2.6241867646 Na 2.35787000448 0.0007892838 2.624186726 Na -2.6256486318 4.5068346666 0.0000001673 Na -2.6256486318 4.5068346666 0.0000001673 Re -0.0167453884 5.1242663951 2.624178317 Re -0.0017170475 0.003111053 0.0000001673 Re -0.0017170475 0.003111053 0.0000004252 H 3.9052360919 3.6232613245 3.8473354516 H -0.542325121 4.063761499 1.401781033 H 3.9052360919 3.6232613245 3.8472931155 H 3.90			KEL_CUIOFF 80			
MEND HGRLD &END DFT &SUBSYS &CELL A 8.8901326513 0.000000000 0.000000000 B -4.4739104629 7.6824375325 0.000000000 C 0.0000001000 0.0000003943 5.2483716421 PERIDDIC XYZ XEND CELL XCOORD Na -1.1859069865 2.0379623261 2.6241869010 Na 2.3578700048 0.0007892838 2.6241867646 Na 2.3578700048 0.0009231392 0.0000001680 Na 1.6251693178 3.1750730554 0.00000001673 Re 4.4364564557 2.5642868258 2.6242177424 Re 0.0167453884 5.1242663051 2.6242177424 Re 0.0167453884 2.4929720119 3.8444638123 H 3.0952360919 3.6232613245 3.8472331155 H 3.7846319842 1.5754183851 1.4010976360 H 3.052278288 3.62325192016 1.4011411061 H -0.6751167153 6.1130464337		9 E N	CUIUFF 900			
&SUBSYS &CELL A 8.8901326513 0.000000000 0.000000000 B -4.4739104629 7.6824375325 0.000000000 C 0.0000001000 0.0000003943 5.2483716421 PERIDDIC XYZ &END CELL &COORD Na -1.1859069865 2.0379623261 2.6241867646 Na 2.3578700048 0.0007892838 2.6241867646 Na 2.5256486318 4.506834666 0.0000001680 Na 1.8251693178 3.1750730554 0.00000001673 Re 4.4364564557 2.564286258 2.6242178317 Re 0.0017170475 0.0030111053 0.0000001673 Re 0.0017170475 0.0030111053 0.0000094252 H 5.6222385887 2.4929720119 3.8444638123 H 3.0952360919 3.6232613245 3.8472931155 H 3.7846337784 1.5754143351 1.4010781033 H 3.0952378288 3.6232592016 1.4011781033 H 3.08325357	<i>ዩ</i> .ፔ	ז בעט ז תואי				
&SUBSYS &CELL A 8.8901326513 0.000000000 0.000000000 B -4.4739104629 7.6824375325 0.000000000 C 0.000000000 0.0000003943 5.2483716421 PERIDDIC XYZ XEMD CELL XECORD Na -1.1859069865 2.0379623261 2.6241867646 Na 2.3578700048 0.000789288 2.6241867726 Na -2.6256486318 4.506834666 0.0000001673 Na -2.625648537 2.5424868726 0.0000001673 Na 1.8251693178 3.1750730554 0.0000001673 Re 4.4364564557 2.564286328 2.6242178317 Re 0.0017170475 0.0030111053 0.0000001673 Re 0.0017170475 0.0030111053 0.0000004252 H 5.6222385887 2.492720119 3.8444638123 H 3.784631784 1.5754143851 1.4010781033 H 3.784631784 1.5754183851 1.4010781033 H 3.0952378288	GL)1 1			
&CELL A 8.8901326513 0.000000000 0.0000000000 B -4.4739104629 7.6824375325 0.000000000 C 0.0000001000 0.0000003943 5.2483716421 PERIDIC XYZ XEND CELL XECORD Na -1.1859069865 2.0379623261 2.6241869010 Na 2.3578700048 0.0007892838 2.6241867646 Na 2.3578700048 0.0007892838 2.6241868726 Na -2.6256486318 4.5068346666 0.0000001680 Na 1.8251693178 3.1750730554 0.0000001673 Re 4.4364564557 2.5642868258 2.6242178317 Re -0.0167453884 5.1242663051 2.6242177424 Re 0.0017170475 0.0030111053 0.0000004252 H 5.622385887 2.4929720119 3.84463123 H 3.9052360919 3.6232613245 3.8472931155 H 3.7846337784 1.5754183851 1.4010976360 H -0.6751167153 6.11304643377 3.844723455	&S	UBSY	ζS			
A 8.8901326513 0.000000000 0.000000000 B -4.4739104629 7.6824375325 0.0000000000 C 0.000000000 0.0000003943 5.2483716421 PERIODIC XYZ XEEND CELL XEEND CELL &COORD 0.000008655 2.0379623261 2.6241869010 Na -1.1859069865 2.0379623261 2.6241867646 Na 2.3578700048 0.0007892838 2.6241868726 Na -2.6256486318 4.5068346666 0.0000001680 Na 1.8251693178 3.1750730554 0.00000001673 Re 4.4364564557 2.564286258 2.6242177424 Re -0.0167453884 5.1242663051 2.6242177424 Re 0.0017170475 0.0030111053 0.0000004252 H 5.6222385887 2.4929720119 3.8444638123 H 3.9052360919 3.6232613245 3.8472354516 H -0.64337784 1.5754183851 1.401076360 H 3.7846337784 1.5754183851 1.4010976360 H 3.052378288 3.6232552016 1.4011411061 <t< td=""><td></td><td>&CI</td><td>ELL</td><td></td><td></td><td></td></t<>		&CI	ELL			
B -4.4739104629 7.6824375325 0.000000000 C 0.0000001000 0.0000003943 5.2483716421 PERIODIC XYZ Second Second Second Ma -1.1859069865 2.0379623261 2.6241867040 Na 3.2449119045 5.6448521398 2.6241867646 Na 2.3578700048 0.0007892838 2.6241868726 Na 2.6256486318 4.5068346666 0.0000001680 Na 5.2158593380 -0.0009231392 0.00000001673 Re 4.4364564557 2.5642868258 2.6242178317 Re -0.0167453884 5.1242663051 2.6242177424 Re 0.0017170475 0.0030111053 0.00000904252 H 3.9052360919 3.6232613245 3.8472931155 H 3.784631784 1.5754183851 1.4010976360 H 3.9052378288 3.6232592016 1.401976326 H 3.9052378288 3.6232592016 1.401977360 H 3.905237828 3.6232592016 1.401976360 <		A	8.8901326513	0.000000000	0.000000000	
C 0.0000001000 0.0000003943 5.2483716421 PERIODIC XYZ BEND CELL BE		В	-4.4739104629	7.6824375325	0.000000000	
PERIODIC XYZ &END CELL &COORD Na -1.1859069865 2.0379623261 2.6241869010 Na 3.2449119045 5.6448521398 2.6241867646 Na 2.3578700048 0.0007892838 2.6241868726 Na -2.6256486318 4.5068346666 0.0000001680 Na 1.8251693178 3.1750730554 0.000001673 Re 4.4364564557 2.5642868258 2.6242178317 Re -0.0167453884 5.1242663051 2.6242177424 Re 0.0017170475 0.0030111053 0.0000094252 H 5.6222368919 3.6232613245 3.8472931155 H 3.9052360919 3.6232613245 3.8472847334516 H -0.5432325121 4.0633761049 1.4010781033 H 3.7846319842 1.5754183851 1.4010976360 H -6.6223383787 2.4929729080 1.4039700228 H 3.9052378288 3.6232592016 1.4011411061 H -0.6751167153 6.1130464337 <t< td=""><td></td><td>С</td><td>0.000001000</td><td>0.000003943</td><td>5.2483716421</td><td></td></t<>		С	0.000001000	0.000003943	5.2483716421	
&END CELL &COORD Na -1.1859069865 2.0379623261 2.6241869010 Na 3.2449119045 5.6448521398 2.6241867646 Na 2.3578700048 0.0007892838 2.6241868726 Na -2.6256486318 4.5068346666 0.0000001680 Na 1.8251693178 3.1750730554 0.0000001673 Re 4.4364564557 2.5642868258 2.6242178317 Re -0.0167453884 5.1242663051 2.6242177424 Re 0.0017170475 0.0030111053 0.0000094252 H 5.6222385887 2.4929720119 3.8444638123 H 3.9052360919 3.6232613245 3.8472931155 H 3.7846319842 1.5754147357 3.8473354516 H -0.5432235121 4.0633761049 1.4010761033 H 3.7846337784 1.5754183851 1.4010970028 H 3.6232592016 1.4011411061 H -0.6751167153 6.1130464337 3.844723455 H 1.1657297010 5.1981428489			PERIODIC XYZ			
&COORD Na -1.1859069865 2.0379623261 2.6241869010 Na 3.2449119045 5.6448521398 2.6241867646 Na 2.3578700048 0.0007892838 2.6241868726 Na -2.6256486318 4.5068346666 0.0000001680 Na 1.8251693178 3.1750730554 0.0000001673 Re 4.4364564557 2.5642868258 2.6242178317 Re -0.0167453884 5.1242663051 2.6242177424 Re 0.0017170475 0.0030111053 0.00000904252 H 5.6222385887 2.4929720119 3.8444638123 H 3.9052360919 3.6232613245 3.8472931155 H 3.7846319842 1.5754147357 3.8473354516 H -0.5432325121 4.0633761049 1.4010761033 H 3.7846337784 1.5754183851 1.4010976360 H 3.6232592016 1.4011411061 H -0.6751167153 6.1130464337 3.844723455 H 1.1657297010 5.1981428489 <t< td=""><td></td><td>&E1</td><td>ND CELL</td><td></td><td></td><td></td></t<>		&E1	ND CELL			
Na-1.18590698652.03796232612.6241869010Na3.24491190455.64485213982.6241867646Na2.35787000480.00078928382.6241868726Na-2.62564863184.50683466660.0000001680Na1.82516931783.17507305540.0000001576Na5.2158593380-0.00092313920.00000001673Re4.43645645572.56428682582.6242178317Re-0.01674538845.12426630512.6242177424Re0.00171704750.00301110530.0000094252H5.6223858872.49297201193.8444638123H3.90523609193.62326132453.8472931155H3.78463198421.57541473573.8473354516H-0.54323251214.06337610491.4010976360H3.62223537872.49297290801.4039700228H3.90523782883.62325920161.4011411061H-0.67511671536.11304643373.844723455H1.16572970105.19814284893.8472647704H1.67634577380.00765153680.0000010890H3.58350803756.23382519230.0000016665H-0.83700538791.45247199860.0000010868H7.68153589560.00088723031.1958253823H0.60380264141.05039046684.0506195218H-3.86494717206.63851811494.0525569576		&C0	OORD			
Na3.24491190455.64485213982.6241867646Na2.35787000480.00078928382.6241868726Na-2.62564863184.50683466660.0000001680Na1.82516931783.17507305540.0000001576Na5.2158593380-0.00092313920.0000001673Re4.43645645572.56428682582.6242178317Re-0.01674538845.12426630512.6242177424Re0.00171704750.00301110530.0000094252H5.62223858872.49297201193.8444638123H3.90523609193.62326132453.8472931155H3.78463198421.57541473573.8473354516H-0.54323251214.06337610491.4010781033H3.78463377841.57541838511.4010976360H5.62223537872.492972908801.4039700228H3.905237020105.19814284893.8472647704H1.67634577380.00765153680.0000010890H3.58350803756.23382519230.0000018868H7.68153589560.00088723031.1958253823H0.60380264141.05039046684.0506195218H-3.86494717206.63851811494.0525569576	Na		-1.1859069865	2.0379623261	2.6241869010	
Na2.35787000480.00078928382.6241868726Na-2.62564863184.50683466660.0000001680Na1.82516931783.17507305540.0000001576Na5.2158593380-0.00092313920.0000001673Re4.43645645572.56428682582.6242178317Re-0.01674538845.12426630512.6242177424Re0.00171704750.00301110530.0000009252H5.62223858872.49297201193.8444638123H3.90523609193.62326132453.8472931155H3.78463198421.57541473573.8473354516H-0.54323251214.06337610491.4010781033H3.78463377841.57541838511.4010976360H5.62223537872.49297209801.4039700228H3.90523782883.62325920161.4011411061H-0.67511671536.11304643373.8444723455H1.16572970105.19814284893.8472647704H1.67634577380.00765153680.0000010890H3.58350803756.23382519230.0000010890H3.58350803756.23382519230.0000010868H7.68153589560.00088723031.1958253823H0.60380264141.05039046684.0506195218H-3.86494717206.63851811494.0525569576	Na		3.2449119045	5.6448521398	2.6241867646	
Na-2.62564863184.50683466660.0000001680Na1.82516931783.17507305540.0000001576Na5.2158593380-0.00092313920.0000001673Re4.43645645572.56428682582.6242178317Re-0.01674538845.12426630512.6242177424Re0.00171704750.00301110530.0000094252H5.62223858872.49297201193.8444638123H3.90523609193.62326132453.8472931155H3.78463198421.57541473573.8473354516H-0.54323251214.06337610491.4010976360H3.78463377841.57541838511.4010976360H5.62223537872.49297290801.4039700228H3.90523782883.62325920161.4011411061H-0.67511671536.11304643373.844723455H1.16572970105.19814284893.8472647704H1.67634577380.00765153680.0000010890H3.58350803756.23382519230.0000010868H-0.83700538791.45247199860.0000010868H7.68153589560.00088723031.1958253823H0.60380264141.05039046684.0506195218H-3.86494717206.63851811494.0525569576	Na		2.3578700048	0.0007892838	2.6241868726	
Na1.82516931783.17507305540.0000001576Na5.2158593380-0.00092313920.0000001673Re4.43645645572.56428682582.6242178317Re-0.01674538845.12426630512.6242177424Re0.00171704750.00301110530.0000094252H5.62223858872.49297201193.8444638123H3.90523609193.62326132453.8472931155H3.78463198421.57541473573.8473354516H-0.5432251214.06337610491.4010781033H3.78463377841.57541838511.4010976360H5.62223537872.49297290801.4039700228H3.90523782883.62325920161.4011411061H-0.67511671536.11304643373.8444723455H1.16572970105.19814284893.8472647704H1.67634577380.00765153680.0000010890H3.58350803756.23382519230.0000010886H-0.633700538791.45247199860.0000010868H7.68153589560.00088723031.1958253823H0.60380264141.05039046684.0506195218H-3.86494717206.63851811494.0525569576	Na		-2.6256486318	4.5068346666	0.000001680	
Na5.215859380-0.00092313920.0000001673Re4.43645645572.56428682582.6242178317Re-0.01674538845.12426630512.6242177424Re0.00171704750.00301110530.0000094252H5.62223858872.49297201193.8444638123H3.90523609193.62326132453.8472931155H3.78463198421.57541473573.8473354516H-0.54323251214.06337610491.4010781033H3.78463377841.57541838511.4010976360H5.62223537872.49297290801.4039700228H3.90523782883.62325920161.4011411061H-0.67511671536.11304643373.8444723455H1.16572970105.19814284893.8472647704H1.67634577380.00765153680.0000010890H3.58350803756.23382519230.0000010868H-0.63700538791.45247199860.0000010868H7.68153589560.00088723031.1958253823H0.60380264141.05039046684.0506195218H-3.86494717206.63851811494.0525569576	Na		1.8251693178	3.1750730554	0.000001576	
Re4.43645645572.56428682582.6242178317Re-0.01674538845.12426630512.6242177424Re0.00171704750.00301110530.0000094252H5.62223858872.49297201193.8444638123H3.90523609193.62326132453.8473354516H3.78463198421.57541473573.8473354516H-0.54323251214.06337610491.4010781033H3.78463377841.57541838511.4010976360H5.62223537872.49297290801.4039700228H3.90523782883.62325920161.4011411061H-0.67511671536.11304643373.8444723455H1.16572970105.19814284893.8472647704H1.6634577380.00765153680.0000010890H3.58350803756.23382519230.0000010868H-0.83700538791.45247199860.0000010868H7.68153589560.00088723031.1958253823H0.60380264141.05039046684.0506195218H-3.86494717206.63851811494.0525569576	Na		5.2158593380	-0.0009231392	0.000001673	
Re-0.01074338845.12420630312.0242177424Re0.00171704750.00301110530.0000094252H5.62223858872.49297201193.8444638123H3.90523609193.62326132453.8472931155H3.78463198421.57541473573.8473354516H-0.54323251214.06337610491.4010781033H3.78463377841.57541838511.4010976360H5.62223537872.49297290801.4039700228H3.90523782883.62325920161.4011411061H-0.67511671536.11304643373.8444723455H1.16572970105.19814284893.8472647704H1.67634577380.00765153680.0000010890H3.58350803756.23382519230.0000010868H-0.633700538791.45247199860.0000010868H7.68153589560.00088723031.1958253823H0.60380264141.05039046684.0506195218H-3.86494717206.63851811494.0525569576	Re		4.4364564557		2.6242178317	
Re0.0017/17047/30.00301110330.0000094232H5.62223858872.49297201193.8444638123H3.90523609193.62326132453.8472931155H3.78463198421.57541473573.8473354516H-0.54323251214.06337610491.4010781033H3.78463377841.57541838511.4010976360H5.62223537872.49297290801.4039700228H3.90523782883.62325920161.4011411061H-0.67511671536.11304643373.8444723455H1.16572970105.19814284893.8472647704H1.67634577380.00765153680.0000010890H3.58350803756.23382519230.0000016665H-0.83700538791.45247199860.0000010868H7.68153589560.00088723031.1958253823H0.60380264141.05039046684.0506195218H-3.86494717206.63851811494.0525569576	Re		-0.010/40004	0.0020111052	2.0242177424	
H3.02223030372.49297201193.0444030123H3.09523609193.62326132453.8472931155H3.78463198421.57541473573.8473354516H-0.54323251214.06337610491.4010781033H3.78463377841.57541838511.4010976360H5.62223537872.49297290801.4039700228H3.90523782883.62325920161.4011411061H-0.67511671536.11304643373.8444723455H1.16572970105.19814284893.8472647704H1.67634577380.00765153680.0000010890H3.58350803756.23382519230.0000016665H-0.83700538791.45247199860.0000010868H7.68153589560.00088723031.1958253823H0.60380264141.05039046684.0506195218H-3.86494717206.63851811494.0525569576	ке ц		5 6222385887	2 /020720110	3 8444638123	
H3.78463198421.57541473573.8473354516H-0.54323251214.06337610491.4010781033H3.78463377841.57541838511.4010976360H5.62223537872.49297290801.4039700228H3.90523782883.62325920161.4011411061H-0.67511671536.11304643373.8444723455H1.16572970105.19814284893.8472647704H1.67634577380.00765153680.0000010890H3.58350803756.23382519230.0000016665H-0.83700538791.45247199860.0000010868H7.68153589560.00088723031.1958253823H0.60380264141.05039046684.0506195218H-3.86494717206.63851811494.0525569576	н		3 9052360919	3 6232613245	3 8472031155	
H-0.54323251214.06337610491.4010781033H3.78463377841.57541838511.4010976360H5.62223537872.49297290801.4039700228H3.90523782883.62325920161.4011411061H-0.67511671536.11304643373.8444723455H1.16572970105.19814284893.8472647704H1.67634577380.00765153680.0000010890H3.58350803756.23382519230.0000016665H-0.83700538791.45247199860.0000010868H7.68153589560.00088723031.1958253823H0.60380264141.05039046684.0506195218H-3.86494717206.63851811494.0525569576	н		3 7846319842	1 5754147357	3 8473354516	
H3.78463377841.57541838511.4010976360H5.62223537872.49297290801.4039700228H3.90523782883.62325920161.4011411061H-0.67511671536.11304643373.8444723455H1.16572970105.19814284893.8472647704H1.67634577380.00765153680.0000010890H3.58350803756.23382519230.0000016665H-0.83700538791.45247199860.0000010868H7.68153589560.00088723031.1958253823H0.60380264141.05039046684.0506195218H-3.86494717206.63851811494.0525569576	н		-0.5432325121	4.0633761049	1.4010781033	
H5.62223537872.49297290801.4039700228H3.90523782883.62325920161.4011411061H-0.67511671536.11304643373.8444723455H1.16572970105.19814284893.8472647704H1.67634577380.00765153680.0000010890H3.58350803756.23382519230.0000016665H-0.83700538791.45247199860.0000010868H7.68153589560.00088723031.1958253823H0.60380264141.05039046684.0506195218H-3.86494717206.63851811494.0525569576	н		3.7846337784	1.5754183851	1.4010976360	
H3.90523782883.62325920161.4011411061H-0.67511671536.11304643373.8444723455H1.16572970105.19814284893.8472647704H1.67634577380.00765153680.0000010890H3.58350803756.23382519230.0000016665H-0.83700538791.45247199860.0000010868H7.68153589560.00088723031.1958253823H0.60380264141.05039046684.0506195218H-3.86494717206.63851811494.0525569576	н		5.6222353787	2.4929729080	1.4039700228	
H-0.67511671536.11304643373.8444723455H1.16572970105.19814284893.8472647704H1.67634577380.00765153680.0000010890H3.58350803756.23382519230.0000016665H-0.83700538791.45247199860.0000010868H7.68153589560.00088723031.1958253823H0.60380264141.05039046684.0506195218H-3.86494717206.63851811494.0525569576	н		3.9052378288	3.6232592016	1.4011411061	
H1.16572970105.19814284893.8472647704H1.67634577380.00765153680.0000010890H3.58350803756.23382519230.0000016665H-0.83700538791.45247199860.0000010868H7.68153589560.00088723031.1958253823H0.60380264141.05039046684.0506195218H-3.86494717206.63851811494.0525569576	Н		-0.6751167153	6.1130464337	3.8444723455	
H1.67634577380.00765153680.0000010890H3.58350803756.23382519230.0000016665H-0.83700538791.45247199860.0000010868H7.68153589560.00088723031.1958253823H0.60380264141.05039046684.0506195218H-3.86494717206.63851811494.0525569576	Н		1.1657297010	5.1981428489	3.8472647704	
H3.58350803756.23382519230.0000016665H-0.83700538791.45247199860.0000010868H7.68153589560.00088723031.1958253823H0.60380264141.05039046684.0506195218H-3.86494717206.63851811494.0525569576	н		1.6763457738	0.0076515368	0.0000010890	
H-0.83700538791.45247199860.0000010868H7.68153589560.00088723031.1958253823H0.60380264141.05039046684.0506195218H-3.86494717206.63851811494.0525569576	Н		3.5835080375	6.2338251923	0.0000016665	
H7.68153589560.00088723031.1958253823H0.60380264141.05039046684.0506195218H-3.86494717206.63851811494.0525569576	Н		-0.8370053879	1.4524719986	0.000010868	
H0.60380264141.05039046684.0506195218H-3.86494717206.63851811494.0525569576	Н		7.6815358956	0.0008872303	1.1958253823	
H -3.8649471720 6.6385181149 4.0525569576	Н		0.6038026414	1.0503904668	4.0506195218	
	Н		-3.8649471720	6.6385181149	4.0525569576	

(continues on next page)

Γ

			(continued from previous page)
Н	-3.8649468269	6.6385180090	1.1958373681
Н	0.6038029996	1.0503908521	1.1977742281
Н	7.6815360048	0.0008870488	4.0525690768
Н	-1.6822864070	5.0230528750	2.6242153250
Н	0.7327983274	6.6152712210	2.6242163261
Н	0.9014162231	3.7301543776	2.6242158401
Н	2.7696859375	2.6561823231	2.6242158698
Н	5.3476415856	3.9623777672	2.6242164032
Н	5.1871788616	1.0740919399	2.6242154475
Н	-0.5432348504	4.0633727533	3.8473548145
Н	-0.6751143293	6.1130441536	1.4039612322
Н	1.1657270304	5.1981432445	1.4011693676
	&END COORD		
	&KIND Na		
	ELEMENT Na		
	BASIS_SET DZVP-MOLO	PT-SR-GTH # use an	AE basis optimized for solids, any other
→(mat	ching the pseudo) will	work too, though	
	POTENTIAL GTH-PBE	<pre># one could also use</pre>	a pseudopotentials (non-AE)
	! while not strictl	y required, this sho	uld make the initial guess more accurate
⇔(Na+	Cl-)		
	&END KIND		
	&KIND Re		
	ELEMENT Re		
	BASIS_SET DZVP-MOLO	PT-SR-GTH # use an	AE basis optimized for solids, any other
⇔(mat	ching the pseudo) will	work too, though	
	POTENTIAL GTH-PBE	<pre># one could also use</pre>	a pseudopotentials (non-AE)
	! while not strictl	y required, this sho	uld make the initial guess more accurate
⇔(Na+	Cl-)		-
	&END KIND		
	&KIND H		
	ELEMENT H		
	BASIS_SET DZVP-MOLO	PT-SR-GTH # use an	AE basis optimized for solids, any other
⊶(mat	ching the pseudo) will	work too, though	
	POTENTIAL GTH-PBE	<pre># one could also use</pre>	a pseudopotentials (non-AE)
	! while not strictl	y required, this sho	uld make the initial guess more accurate
→(Na+	C1-)		-
	&END KIND		
&EN	D SUBSYS		
STR	ESS_TENSOR ANALYTICAL		
@IF \$D	0_CELLOPT == no		
&PR	INT		
	&STRESS_TENSOR		
	ADD_LAST NUMERIC		
	FILENAME stress_ten	sor	
	&END STRESS_TENSOR		
	&FORCES		
	ADD_LAST NUMERIC		
	FILENAME forces		
	&END FORCES		

```
&END PRINT
@ENDIF
&END FORCE_EVAL
@IF $DO_CELLOPT == yes
&MOTION
&CELL_OPT
KEEP_ANGLES .TRUE.
MAX_FORCE 1.0E-10
&END CELL_OPT
&END MOTION
@ENDIF
```

Then run

\$ phonopy --cp2k -d --dim="1 1 1" --pm --amplitude 0.005 -c na2reh9-template.inp

The parameter after -c is the above-mentioned CP2K template input file containing the optimized structure. Phonopy generates a series of CP2K input files for force evaluation: na2reh9-template-supercell-001.inp, na2reh9-template-supercell-002.inp, This step will also generate a phonopy_disp.yaml file.

The generated CP2K input can look like

```
# Generated by Phonopy, based on na2reh9-template.inp
# Merged configuration with displacements
&FORCE_EVAL
  METHOD QUICKSTEP
  STRESS_TENSOR ANALYTICAL
   &PRINT
      &FORCES
         ADD_LAST NUMERIC
         FILENAME forces
      &END FORCES
      &STRESS_TENSOR
         ADD_LAST NUMERIC
         FILENAME stress_tensor
      &END STRESS_TENSOR
  &END PRINT
  &SUBSYS
      &KIND H
         ELEMENT H
         BASIS_SET DZVP-MOLOPT-SR-GTH
         POTENTIAL GTH-PBE
      &END KIND
      &KIND Re
         ELEMENT Re
         BASIS_SET DZVP-MOLOPT-SR-GTH
         POTENTIAL GTH-PBE
      &END KIND
      &KIND Na
         ELEMENT Na
         BASIS_SET DZVP-MOLOPT-SR-GTH
         POTENTIAL GTH-PBE
```

```
&END KIND
   &COORD
      Na -1.1809069865 2.0379623261 2.624186901
      Na 3.2449119044999986 5.6448521398 2.6241867646
      Na 2.3578700047999996 0.0007892838 2.6241868725999993
      Na 6.2644840195 4.5068346666 1.67999999999999997e-07
      Na 1.825169317800001 3.1750730554 1.576e-07
      Na 0.7419488750999992 7.6815143933 1.673e-07
      Re 4.436456455700002 2.5642868258 2.6242178317
      Re -0.01674538839999951 5.124266305100002 2.6242177424
      Re 0.0017170474999999995 0.003011105300000001 9.4251999999999999e-06
      H 5.6222385887 2.4929720119 3.844463812299999
      H 3.9052360918999995 3.6232613245 3.847293115499999
      H 3.7846319841999994 1.5754147357000003 3.847335451599999
      H -0.5432325121 4.0633761049 1.4010781033
     H 3.7846337784 1.5754183851 1.401097636
      H 5.6222353787 2.492972907999999 1.4039700228
      H 3.9052378287999994 3.6232592016 1.4011411060999996
      H -0.6751167152999991 6.113046433700002 3.8444723455
     H 1.165729701000001 5.198142848899998 3.8472647704
      H 1.6763457738 0.007651536800000025 1.089e-06
     H 3.583508037500002 6.2338251923 1.6665e-06
      H -0.8370053878999996 1.4524719986 1.08679999999999997e-06
     H 7.6815358956 0.000887230300000002 1.1958253823
      H 0.6038026414 1.0503904668 4.0506195218
     H -3.864947171999999 6.6385181149 4.0525569576
     H -3.864946826899999 6.638518009 1.1958373681
     H 0.6038029995999996 1.0503908521 1.1977742281
      H 7.6815360048 0.0008870488 4.052569076799999
      H -1.682286407 5.023052875 2.6242153249999998
     H 0.7327983273999987 6.615271221 2.624216326099999
     H 0.9014162231000011 3.730154377600001 2.6242158401
     H 2.7696859375000003 2.6561823231 2.6242158698
     H 5.3476415856 3.9623777672 2.6242164032
     H 5.1871788616 1.0740919399 2.6242154474999997
     H -0.5432348503999994 4.0633727533 3.8473548145
     H -0.6751143292999994 6.1130441536 1.4039612321999997
      H 1.1657270304000014 5.1981432445 1.4011693676
   &END COORD
   &CELL
      A 8.8901326513 0.0 0.0
      B -4.4739104629 7.6824375325 0.0
      C 1e-07 3.943e-07 5.2483716421
     PERIODIC XYZ
   &END CELL
&END SUBSYS
&DFT
  BASIS_SET_FILE_NAME BASIS_MOLOPT
  POTENTIAL_FILE_NAME POTENTIAL
   &MGRID
      REL_CUTOFF 80.0
      CUTOFF 900.0
```

&END MGRID &XC &XC_FUNCTIONAL PBE &PBE PARAMETRIZATION REVPBE &END PBE &END XC_FUNCTIONAL &END XC &KPOINTS SCHEME MONKHORST-PACK 5 5 8 SYMMETRY .FALSE. &END KPOINTS &SCF EPS_SCF 1e-07 MAX_SCF 80 &MIXING METHOD BROYDEN_MIXING ALPHA 0.4 NBUFFER 8 &END MIXING &DIAGONALIZATION ALGORITHM STANDARD & END DIAGONALIZATION &END SCF &POISSON PERIODIC XYZ POISSON_SOLVER PERIODIC &END POISSON &0S EPS_DEFAULT 1e-10 &END OS &END DFT &END FORCE EVAL &GLOBAL PROJECT_NAME na2reh9-phonopy-supercell-001 RUN_TYPE ENERGY_FORCE PRINT_LEVEL MEDIUM &END GLOBAL

After the force evaluation for these generated input files is completed, it creates a series files containing the force information: na2reh9-phonopy-supercell-001-forces-1_0.xyz, na2reh9-phonopy-supercell-002-forces-1_0.xyz, ...

Make sure that these .xyz files are collected in one directory and this directory should contain phonopy_disp.yaml file.

Run Phonopy to create the FORCE_SETS file

\$ phonopy --cp2k -f na2reh9-phonopy-supercell-{001..xxx}-forces-1_0.xyz

xxx is the total number of displaced structures generated by Phonopy

Then use Phonopy to generate the FORCE_CONSTANTS file

\$ phonopy --dim="1 1 1" --writefc

Compose the input file cp2k.inp for LModeA-nano

@cp2k

mode = phonopy
FCPHONOPY = FORCE_CONSTANTS
INPUT = na2reh9-template.inp

The INPUT parameter specifies the template CP2K input file containing the optimized structure.

1.6.3 Quantum ESPRESSO

Tested with QE 6.4.1.

There are two ways to do local mode analysis on the results from QE. The first one is to utilize the density functional perturbation theory (DFPT) implemented in QE to obtain the force contant matrix at Gamma point (q=0). The other method known as "frozon phonon" is to use finite difference approach to generate a series of force sets in order to construct the Hessian matrix by using Phonopy package.

These two approaches are equivalent in principle. While the DFPT method in QE has limited support for levels of theory (e.g. hybrid density functional), one has to use the finite difference approach if DFPT is not applicable. Therefore, it is recommended to employ the frozon phonon method.

Suppose that users have obtained the optimized primitive cell structure of a solid, the following tutorial skips this cell optimization step.

DFPT

This method includes three steps

- 1. SCF calculation with pw.x
- 2. DFPT calculation with ph.x
- 3. generate force constant matrix with q2r.x

Based on an optimized primitive unit cell structure, prepare an SCF input file diamond-scf.inp

```
&CONTROL
```

```
pseudo_dir = '.'
outdir = './outp'
calculation = 'scf'
prefix='carbon'
/
&SYSTEM
  ibrav = 0
  nat = 2
  ntyp = 1
  ecutwfc = 40.0
  ecutrho = 400.0
/
```

```
&ELECTRONS
  scf_must_converge = .true.
 /
ATOMIC_SPECIES
C 12.0107 C.pbe-n-rrkjus_psl.1.0.0.UPF
CELL_PARAMETERS (angstrom)
                0.000000000
   2.522557697
                             -0.000000000
   1.261278849
               2.184599048
                             -0.000000000
   1.261278849 0.728199683
                             2.060840365
ATOMIC_POSITIONS (angstrom)
С
         3.783836546
                     2.184599048
                                    1.545801941
С
        2.522557698 1.456399366
                                   1.030248516
K_POINTS automatic
  5 5 5 1 1 1
```

The CELL_PARAMETERS and ATOMIC_POSITIONS have to be in the unit of angstrom.

Run DFPT calculations. The program to run this job is PHonon (ph.x). The input file needs to specify the same outdir and prefix as the SCF job did. In addition, specify the Gamma point (q=[0,0,0]) in the end of the input file.

```
phonons of diamond at Gamma
&inputph
   tr2_ph=1.0d-14,
   epsil=.true.,
   prefix='carbon',
   fildyn='dynmat.dyn1',
   amass(1)=12.0107,
   outdir='./outp'
/
0.0 0.0 0.0
```

The fildyn specifies the name of the dynamical matrix file as an output.

Create a text file named dynmat.dyn0

 $\begin{array}{ccc} 1 & 1 & 1 \\ 1 & & \end{array}$

Run

```
$ cp dynmat.dyn1 dynmat.dyn
```

Prepare the input file for q2r.x

```
&input
  fildyn='dynmat.dyn',
  zasr='simple',
  flfrc='diamond.fc'
/
```

In this input file, the zasr controls the the *acoustic sum rules*. For solid systems, we need to set zasr to 'simple' or 'crystal'. For one-dimensional polymer systems, we need to set zasr to 'one-dim'. For isolated molecular systems, we need to set zasr to 'zero-dim'.

The parameter flfrc specifies the name of the interatomic force constant file generated from the calculation of q2r.x.

So far, we have obtained necessary data files for local mode analysis

- diamond-scf.inp input file for SCF calculation
- diamond.fc the force constant file specified by flfrc

Compose an input file qe.inp for local mode analysis

```
@QE
mode = dfpt
GeomIn = diamond-scf.in
q2rFC = diamond.fc
```

Follow these steps to perform local mode analysis with LModeA-nano

- open a new PyMOL window and launch LModeA-nano by clicking Plugin \rightarrow LModeA-nano
- click the ... (Browse) button and select the qe.inp file
- change the program drop-down list from VASP to Quantum ESPRESSO
- click Load
- change Dimensions to 3 and click Confirm button
- change the supercell size percentage from 110% to 140% or other values, and click Partial Supercell button

Then local mode analysis can be performed as described in quickstart examples.

Frozon Phonon

Given an already optimized cell structure, prepare a template QE input file diamond-temp.in

```
&CONTROL
   pseudo_dir = '.'
   calculation = 'scf'
   tprnfor = .true.
   tstress = .true.
/

&SYSTEM
   ibrav = 0
   nat = 2
   ntyp = 1
   ecutwfc = 40.0
   ecutrho = 400.0
/

&ELECTRONS
scf_must_converge = .true.
/
```

```
ATOMIC_SPECIES
C 12.0107 C.pbe-n-rrkjus_psl.1.0.0.UPF
CELL_PARAMETERS (angstrom)
   2.522557697 0.00000000 -0.00000000
   1.261278849 2.184599048 -0.000000000
                            2.060840365
   1.261278849 0.728199683
ATOMIC_POSITIONS (crystal)
С
     0.749972224
                        0.749972284
                                            0.750083327
С
     0.500027776
                        0.500027716
                                            0.499916703
K_POINTS automatic
  5 5 5 1 1 1
```

It is important to set tprnfor and tstress as force evaluation is desired to construct Hessian. In addition, the atomic positions have to be in the crystal format using the fractional coordinates as required by Phonopy later.

Then save upper and lower part as two separate files

diamond-temp-upper.in:

```
&CONTROL
   pseudo_dir = '.'
    calculation = 'scf'
    tprnfor = .true.
    tstress = .true.
 /
&SYSTEM
    ibrav = 🛛
   nat = 2
   ntyp = 1
    ecutwfc = 40.0
    ecutrho = 400.0
 /
&ELECTRONS
scf_must_converge = .true.
/
```

diamond-temp-lower.in:

K_POINTS automatic
5 5 5 1 1 1

Use Phonopy to generate displaced structures

\$ phonopy --qe -c diamond-temp.in -d --dim="1 1 1"

This will generates a series of files containing the displaced structures supercell-001.in, supercell-002.in, But these files only contains the structure information. Create complete QE input files with the following script

```
prefix="supercell-"
for a in supercell-*.in
do
            b=${a#$prefix}
            cat diamond-temp-upper.in $a diamond-temp-lower.in > diamond-${b}
done
```

This script can generate QE input files diamond-001.in, diamond-002.in, These input files differ from diamond-temp.in only in the structure information.

Run QE pw.x calculations with these generated input files, the output files are expected to be diamond-001.out, diamond-002.out, ...

Use Phonopy to generate the FORCE_SETS file

\$ phonopy --qe -f diamond-{001..xxx}.out

xxx is the total number of displaced structures.

Generate FORCE_CONSTANTS file with Phonopy

\$ phonopy --writefc

Compose a LModeA-nano input file qe.inp

```
@QE
mode = phonopy
GeomIn = diamond-temp.in
FCPHONOPY = FORCE_CONSTANTS
```

The remaining step to perform local mode analysis is the same as in DFPT method.

1.6.4 CASTEP

Tested with CASTEP 20.11. CASTEP is able to perform phonon (vibrational analysis) calculations with either *DFPT* or *finite difference* method.

Given the already optimized solid structure, prepare the .cell input for CASTEP

```
%BLOCK lattice_cart
Ang
              0.0000000
                             0.0000000
2.5333173
1.2666587
              2.1939171
                             0.0000000
1.2666587
              0.7313057
                             2.0684936
%ENDBLOCK lattice_cart
%BLOCK positions_frac
С
                 0.749996
                             0.749996
                                        0.750013
С
                 0.500004
                             0.500004
                                        0.499987
%ENDBLOCK positions_frac
! Choose which pseudopotentials to use
```

```
! Either specify external files, or omit to generate a pseudopotential
%BLOCK species_pot
C NCP
%ENDBLOCK species_pot
! Analyse structure to determine symmetry
1
!symmetry_generate
ŗ
! Specify M-P grid dimensions for electron wavevectors (K-points)
Ţ
kpoint_mp_grid 5 5 5
! Offset the grid in the xy plane to include (0,0,0)
%block PHONON_KPOINT_LIST
   0.0
         0.0
              0.0
                    1.0
                                ! Wavevector of phonon(s) to compute ( qx qy qz,
→weight)
%endblock PHONON_KPOINT_LIST
```

Then prepare the .param file for either DFPT

```
IPRINT 3
I
!
  Task keyword specifies type of calculation
              : phonon
task
ŗ
! Treat the system as an insulator
I
fix_occupancy : true
1
! Tune for speed rather than memory conservation.
1
opt_strategy : speed
Ţ
! Don't write unnecessary wavefunction files
L
num_dump_cycles : 0
1
! Choose exchange-correlation functional
Т
xc_functional : PBE
! Give plane-wave cutoff. Also allowed keywords (COARSE, MEDIUM, FINE, PRECISE)
BASIS_PRECISION : FINE
T
! Choose size of FFT grid. 2.0 is fully converged. 1.75 is good enough for LDA
L
grid_scale 2.0
1
```

```
! Choose which SCF solver to use ("none" for allbands, "dm" for Density Mixing)
!
elec_method : dm
mixing_scheme : Pulay
mix_charge_amp : 0.6
!
! Convergence tolerance criterion - energy per atom.
!
elec_energy_tol : 1.0e-9 eV
!
! Turn on calculation of stress (off by default)
!
calculate_stress : true
phonon_sum_rule : true
```

or finite difference calculation

```
IPRINT 2
! Task keyword specifies type of calculation
              : phonon
task
PHONON_METHOD : FINITEDISPLACEMENT
ŗ
! Treat the system as an insulator
1
fix_occupancy : true
! Tune for speed rather than memory conservation.
Į.
opt_strategy : speed
1
! Don't write unnecessary wavefunction files
Ţ
num_dump_cycles : 0
! Choose exchange-correlation functional
1
xc_functional : PBE
L
! Give plane-wave cutoff. Also allowed keywords (COARSE, MEDIUM, FINE, PRECISE)
L
BASIS_PRECISION : FINE
Ţ
! Choose size of FFT grid. 2.0 is fully converged. 1.75 is good enough for LDA
L
grid_scale 2.0
! Choose which SCF solver to use ("none" for allbands, "dm" for Density Mixing)
!
```

```
elec_method : dm
mixing_scheme : Pulay
mix_charge_amp : 0.6
!
! Convergence tolerance criterion - energy per atom.
!
elec_energy_tol : 1.0e-9 eV
!
! Turn on calculation of stress (off by default)
!
calculate_stress : true
phonon_sum_rule : true
```

The major output is .castep file. Then compose an input file castep.inp for LModeA-nano.

@castep
output = xxxx.castep

Follow these steps

- open a new PyMOL window and launch LModeA-nano by clicking Plugin \rightarrow LModeA-nano
- click the ... (Browse) button and select the qe.inp file
- change the program drop-down list from VASP to CASTEP
- click Load
- change Dimensions to 3 and click Confirm button
- change the supercell size percentage from 110% to 140% or other values, and click Partial Supercell button

Then local mode analysis can be performed as described in quickstart examples.

1.6.5 CRYSTAL

Tested with CRYSTAL17.

To optimize the primitive cell structure, the input file can be

```
graphene
SLAB
1
2.456 2.456 120.00
2
    0.000000000
                         0.000000000
                                              0.000000000
6
     0.3333333333
                         0.666666666
                                              0.000000000
6
OPTGEOM
TOLDEG
0.0000050
TOLDEX
0.000010
TOLDEE
```

1E-9			
END			
END			
6 6			
0 0 5 2 1			
1238.40169380	0.0054568832082	2	
186.290049920	0.0406384092110	0	
42.2511763460	0.1802559388800)	
11.6765579320	0.4631512175500	0	
3.59305064820	0.4408717331400	0	
0 0 1 2 1	011100/1/00110	•	
0 46866670000	1 00000000000000	0	
0 0 1 0 1	1.0000000000000000000000000000000000000		
0 23547146000	1 0000000000000000)	
0.23347140000	1.0000000000000000000000000000000000000	y	
	0 020207071720	`	
9.40009700210	0.000070717200		
2.01035451420	0.2111/02511200	y	
0.54//1004/0/	0.513281/211400	y .	
02101			
0.21046214000	1.000000000000000)	
0 3 1 0 1			
0.52857792000	1.00000000000000)	
8 5			
0 0 6 2.0 1.0			
0.5484671660 D +04	0.1831074430 D -02		
0.8252349460D+03	0.1395017220D-01		
0.1880469580D+03	0.6844507810D-01		
0.5296450000D+02	0.2327143360D+00		
0.1689757040 D +02	0.4701928980D+00		
0.5799635340 D +01	0.3585208530D+00		
0 1 3 6.0 1.0			
0.1553961625D+02	-0.1107775495 D +00	0.7087426823D-01	
0.3599933586D+01	-0.1480262627D+00	0.3397528391D+00	
0.1013761750D+01	0.1130767015D+01	0.7271585773D+00	
0 1 1 0.0 1.0			
0.2700058226D+00	0.1000000000D+01	0.1000000000D+01	
0 1 1 0 0 1 0	5.100000000D-01		
0 845000000000	ΔΩΩΩΩΩΩΩ⊥Ω1	0 10000000000000⊥01	
	a. TAAAAAAAAAAAAAAA	a. 1000000000000000000000000000000000000	
	ል 1000000000000000000000000000000000000		
	A. TAAAAAAAAAAAAAAAAAAA		
0 0 3 I.U I.U	0 22404004245 04		
W.18/3113696D+02	v.3349460434D-01		
0.2825394365D+01	0.234/269535D+00		
0.6401216923D+00	0.8137573261 D +00		
0 0 1 0.0 1.0			
0.1612777588D+00	0.100000000D+01		
0 2 1 0.0 1.0			
0.220000000D+01	0.100000000D+01		
0 2 1 0.0 1.0			
0.550000000D+00	0.100000000D+01		
99 0			

END		
DFT		
EXCHANGE		
PBE		
CORRELAT		
PBE		
CHUNKS		
200		
XXLGRID		
END		
TOLDEE		
9		
TOLINTEG		
11 11 11	11	20
SHRINK		
20 20		
END		

With the optimized cell, perform the vibrational analysis

```
graphene
SLAB
1
2.47398205
               2.47398694 120.000076
2
6
       3.551099899926E-07 1.528176553945E-07 1.149651240873E-06
6
       3.333329778900E-01 -3.333334868177E-01 -1.149651240873E-06
FREQCALC
NUMDERIV
2
STEPSIZE
0.003
END
END
6 6
0 0 5 2 1
 1238.40169380
                      0.0054568832082
  186.290049920
                      0.0406384092110
  42.2511763460
                      0.1802559388800
 11.6765579320
                      0.4631512175500
  3.59305064820
                      0.4408717331400
0 0 1 2 1
 0.46866670000
                      1.0000000000000
0 0 1 0 1
  0.23547146000
                      1.0000000000000
0 2 3 2 1
 9.46809706210
                      0.0383878717280
 2.01035451420
                      0.2111702511200
  0.54771004707
                      0.5132817211400
0 2 1 0 1
  0.21046214000
                      1.0000000000000
0 3 1 0 1
```

```
0.52857792000
                     1.0000000000000
8 5
0 0 6 2.0 1.0
0.5484671660D+04 0.1831074430D-02
0.8252349460D+03 0.1395017220D-01
0.1880469580D+03 0.6844507810D-01
0.5296450000D+02 0.2327143360D+00
0.1689757040D+02 0.4701928980D+00
0.5799635340D+01 0.3585208530D+00
0 1 3 6.0 1.0
0.1553961625D+02 -0.1107775495D+00 0.7087426823D-01
0.3599933586D+01 -0.1480262627D+00 0.3397528391D+00
0.1013761750D+01 0.1130767015D+01 0.7271585773D+00
0 1 1 0.0 1.0
0.2700058226D+00 0.100000000D+01 0.100000000D+01
0 1 1 0.0 1.0
0.845000000D-01 0.10000000D+01 0.10000000D+01
0 3 1 0.0 1.0
0.80000000D+00 0.10000000D+01
1 4
0 0 3 1.0 1.0
0.1873113696D+02 0.3349460434D-01
0.2825394365D+01 0.2347269535D+00
0.6401216923D+00 0.8137573261D+00
0 0 1 0.0 1.0
0.1612777588D+00 0.100000000D+01
0 2 1 0.0 1.0
0.220000000D+01 0.100000000D+01
0 2 1 0.0 1.0
 0.550000000D+00 0.10000000D+01
99 0
END
DFT
EXCHANGE
PBE
CORRELAT
PBE
CHUNKS
200
XXLGRID
END
TOLDEE
9
TOLINTEG
11 11 11 11 20
SHRINK
20 20
END
```

NUMDERIV set to 2 means double-sided finite difference while calculating the Hessian. STEPSIZE sets the step size for finite displacements in Å.

The calculation produces the main ouput file xxxx.out and the Hessian file HESSFREQ.DAT.

Then follow the instructions in quickstart example to do local mode analysis with LModeA-nano.

1.7 Quantum Chemistry Modeling Packages

LModeA-nano can directly read the formatted checkpoint file generated by Gaussian and Q-Chem. Other quantum chemistry modeling packages (e.g. ORCA, xtb) requires the formatted data file generated by UniMoVib.

Note: LModeA-nano can do basic local mode analysis for bond length and bond angles. More advanced analysis including decomposition of normal modes, adiabatic connection scheme and other internal coordinates are supported only by LModeA code.

1.7.1 Gaussian

Tested with Gaussian 16.

Perform an OPT+Freq calculation to do geometry optimization and then vibrational analysis.

```
%chk=ben.chk
%nproc=36
#p hf/6-31g opt freq geom=connectivity
Title Card Required
```

C -0.54491017 1.16167665 0.000000000 C 0.85024983 1.16167665 0.0000000000 C 1.54778783 2.36942765 0.00000000000000000000000000000000000	0 1			
C 0.85024983 1.16167665 0.00000000 C 1.54778783 2.36942765 0.00000000 C 0.85013383 3.57793665 -0.00119900 C -0.54469117 3.57785865 -0.00167800 C -1.24229217 2.36965265 -0.00068200 H -1.09466917 0.20935965 0.00045000 H 1.39975783 0.20916365 0.00131500 H 2.64746783 2.36950765 0.00063400 H 1.40033383 4.53007965 -0.00125800 H -1.09481317 4.53013965 -0.00086200 H -2.34189617 2.36983565 -0.00086200 H -2.34189617 2.36983565 -0.00086200 1 2 1.5 6 1.5 7 1.0 2 3 1.5 8 1.0 3 4 1.5 9 1.0 4 5 1.5 10 1.0 5 6 1.5 11 1.0 6 12 1.0 7 8 9 10 11 12 12 14 14 12 14 14 14 14 12 14 14 14 14 14 15 <td>С</td> <td>-0.54491017</td> <td>1.16167665</td> <td>0.0000000</td>	С	-0.54491017	1.16167665	0.0000000
C 1.54778783 2.36942765 0.00000000 C 0.85013383 3.57793665 -0.00119900 C -0.54469117 3.57785865 -0.00167800 C -1.24229217 2.36965265 -0.00068200 H -1.09466917 0.20935965 0.00045000 H 1.39975783 0.20916365 0.00131500 H 2.64746783 2.36950765 0.00063400 H 1.40033383 4.53007965 -0.00125800 H -1.09481317 4.53013965 -0.00263100 H -2.34189617 2.36983565 -0.00086200 1 2 1.5 6 1.5 7 1.0 2 3 1.5 8 1.0 3 4 1.5 9 10 1 1.0 6 12 1.0 7 8 9 10 11 12 12 1.0 11 12 12 12 12	С	0.85024983	1.16167665	0.0000000
C 0.85013383 3.57793665 -0.00119906 C -0.54469117 3.57785865 -0.00167806 C -1.24229217 2.36965265 -0.00068206 H -1.09466917 0.20935965 0.000450006 H 1.39975783 0.20916365 0.00063406 H 1.40033383 4.53007965 -0.00125806 H 1.40033383 4.53007965 -0.00263106 H -2.34189617 2.36983565 -0.00086200 H -2.34189617 2.36983565 -0.00086200 I 2 1.5 6 1.5 7 1.0 2 3 1.5 8 1.0 3 4 1.5 9 I0 11 1.0 -0 -7 8 9 10 11 12 I2 1.5 10 1.0 -1	С	1.54778783	2.36942765	0.0000000
C -0.54469117 3.57785865 -0.00167800 C -1.24229217 2.36965265 -0.00068200 H -1.09466917 0.20935965 0.00045000 H 2.64746783 2.36950765 0.00063400 H 1.40033383 4.53007965 -0.00125800 H -1.09481317 4.53013965 -0.00263100 H -2.34189617 2.36983565 -0.00086200 1 2 1.5 6 1.5 7 1.0 2 3 1.5 8 1.0 3 4 1.5 9 1.0 4 5 1.5 10 1.0 5 6 1.5 11 1.0 6 12 1.0 7 8 9 10 11 12	С	0.85013383	3.57793665	-0.00119900
C -1.24229217 2.36965265 -0.00068200 H -1.09466917 0.20935965 0.00045000 H 1.39975783 0.20916365 0.00131500 H 2.64746783 2.36950765 0.00063400 H 1.40033383 4.53007965 -0.00125800 H -1.09481317 4.53013965 -0.00263100 H -2.34189617 2.36983565 -0.00086200 1 2 1.5 6 1.5 7 1.0 2 3 1.5 8 1.0 3 4 1.5 9 1.0 4 5 1.5 10 1.0 5 6 1.5 11 1.0 6 12 1.0 7 8 9 10 11 12	С	-0.54469117	3.57785865	-0.00167800
H -1.09466917 0.20935965 0.00045000 H 1.39975783 0.20916365 0.00131500 H 2.64746783 2.36950765 0.00063400 H 1.40033383 4.53007965 -0.00125800 H -1.09481317 4.53013965 -0.00263100 H -2.34189617 2.36983565 -0.00086200 I 2 1.5 6 1.5 7 1.0 2 3 1.5 8 1.0 3 4 1.5 9 1.0 4 5 1.5 10 1.0 5 6 1.5 11 1.0 6 12 1.0 7 8 9 10 11 12 12 1.5 1.5 1.2 1.5	С	-1.24229217	2.36965265	-0.00068200
H 1.39975783 0.20916365 0.00131500 H 2.64746783 2.36950765 0.00063400 H 1.40033383 4.53007965 -0.00125800 H -1.09481317 4.53013965 -0.00263100 H -2.34189617 2.36983565 -0.00086200 1 2 1.5 6 1.5 7 1.0 2 3 1.5 8 1.0 3 4 1.5 9 1.0 4 5 1.5 10 1.0 5 6 1.5 11 1.0 6 12 1.0 7 8 9 10 11 12 12 1.5 1.5 1.2 1.0 1.2 1.2 1.2 1.2 1.3 1	Н	-1.09466917	0.20935965	0.00045000
H 2.64746783 2.36950765 0.00063400 H 1.40033383 4.53007965 -0.00125800 H -1.09481317 4.53013965 -0.00263100 H -2.34189617 2.36983565 -0.00086200 1 2 1.5 6 1.5 7 1.0 2 3 1.5 8 1.0 3 4 1.5 9 1.0 4 5 1.5 10 1.0 5 6 1.5 11 1.0 6 12 1.0 7 8 9 10 11 12	Н	1.39975783	0.20916365	0.00131500
H 1.40033383 4.53007965 -0.00125800 H -1.09481317 4.53013965 -0.00263100 H -2.34189617 2.36983565 -0.00086200 1 2 1.5 6 1.5 7 1.0 2 3 1.5 8 1.0 3 4 1.5 9 1.0 4 5 1.5 10 1.0 5 6 1.5 11 1.0 6 12 1.0 7 8 9 10 11 12	Н	2.64746783	2.36950765	0.00063400
H -1.09481317 4.53013965 -0.00263100 H -2.34189617 2.36983565 -0.00086200 1 2 1.5 6 1.5 7 1.0 2 3 1.5 8 1.0 3 4 1.5 9 1.0 4 5 1.5 10 1.0 5 6 1.5 11 1.0 6 12 1.0 7 8 9 10 11 12	Н	1.40033383	4.53007965	-0.00125800
H -2.34189617 2.36983565 -0.00086200 1 2 1.5 6 1.5 7 1.0 2 3 1.5 8 1.0 3 4 1.5 9 1.0 4 5 1.5 10 1.0 5 6 1.5 11 1.0 6 12 1.0 7 8 9 10 11 12	Н	-1.09481317	4.53013965	-0.00263100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	-2.34189617	2.36983565	-0.00086200
	1 2 1.5 6 1.5 7 2 3 1.5 8 1.0 3 4 1.5 9 1.0 4 5 1.5 10 1.0 5 6 1.5 11 1.0 6 12 1.0 7 8 9 10 11 12	1.0		

Please check the vibrational frequencies to make sure that the molecular structure is at a local minimum point.

The %chk is a must to first produce checkpoint file. Convert it to formatted one with

\$ formchk ben.chk

The corresponding . fchk file is then generated. Then follow the instructions in *quickstart example* to do local mode analysis with LModeA-nano.

1.7.2 Q-Chem

Tested with Q-Chem 5.1.0

Given an optimized molecular structure, perform vibrational analysis

```
$comment
 water freq
$end
$molecule
0 1
0
       -0.000001
                 -0.000001
                               -0.408455
Н
       0.758758
                 -0.000004
                                0.204225
Н
       -0.758756
                    0.000004
                                0.204230
$end
$rem
MEM_TOTAL 100000
BASIS cc-pVDZ
METHOD b3lyp
xc_grid 75000302
UNRESTRICTED FALSE
JOBTYPE
          freq
THRESH 14
SCF CONVERGENCE 10
GUI 2
$end
```

GUI 2 asks Q-Chem to produce the formatted checkpoint file . fchk. Always check the vibrational frequencies before doing local mode analysis. Then follow the instructions in *quickstart example* to do local mode analysis with LModeAnano.

1.7.3 Other Packages

To perform local mode analysis based on the calculation results by other quantum chemistry packages, the UniMoVib package should be installed first.

The workflow is

- Perform vibrational analysis on an optimized molecular structure with a quantum chemistry package (e.g. ORCA, xtb)
- Run UniMoVib to generate a formatted data file .umv by parsing the output file in the last step

• Load the .umv file to LModeA-nano for local mode analysis

A complete list of supported quantum chemistry packages by UniMoVib can be found at https://github.com/zorkzou/ UniMoVib.

In this tutorial, ORCA 4 is used as an example.

The vibrational analysis of an optimized molecular structure with ORCA 4 produces an .hess file. Compose an input file job.inp for UniMoVib

```
a test job
$contrl
   qcprog="orca"
   ifsave=.true.
$end
$qcdata
   fchk="h2o.hess"
$end
```

ifsave=.true. saves a formatted data file .umv. Running UniMoVib with above input, it produces job.umv.

Compose an input file unimovib.inp for LModeA-nano

@unimovib		
UMV = job.umv		

Follow these steps to perform local mode analysis with LModeA-nano

- open a new PyMOL window and launch LModeA-nano by clicking $Plugin \rightarrow LModeA-nano$
- click the ... (Browse) button and select the unimovib.inp file
- change the program drop-down list from VASP to UniMoVib
- · click Load
- · change Dimensions to 0 and click Confirm button

Then local mode analysis can be performed as described in quickstart examples.

1.8 Finite Difference Method

Above tutorials on performing local mode analysis with LModeA-nano all require the calculation of the full Hessian matrix, then the local stretching force constant can be calculated via analytical formula under the hood. In the following, a finite difference method to obtain the same local stretching force constant is introduced for the following situations/purposes

- The chemical structure is too large to have its full Hessian matrix calculated in an efficient manner. In addition, there is only one or two chemical bonds of interest to be analyzed in this system.
- In order to understand local mode analysis in a straightforward manner.

Follow these steps

- optimize the molecular or primitive cell structure to a local minimum point, record the total energy as $E_{(r_0)}$
- find the chemical bond of interest, its bond length is r_0

- lengthen this bond by a tiny amount Δr (e.g. 0.005 Å), fix this bond length or fix the Cartesian coordinates of these two bonded atoms, optimize the remaining structure (including cell parameters in the case of solid), record the final total energy as $E_{(r_0+\Delta r)}$
- shorten this bond by a tiny amount Δr (e.g. 0.005 Å), fix this bond length or fix the Cartesian coordinates of these two bonded atoms, optimize the remaining structure (including cell parameters in the case of solid), record the final total energy as $E_{(r_0 \Delta r)}$
- the approximate local stretching force constant $k_n^a \approx (E_{(r_0 + \Delta r)} 2E_{(r_0)} + E_{(r_0 \Delta r)})/\Delta r^2$

Conversion factors to mdyn/Å are

- 1 Hartree/ 2 = 4.3597 mdyn/Å
- $1 \text{ eV}/^2 = 0.1602 \text{ mdyn/Å}$

1.9 Frequently Asked Questions

Q: I have never heard about nor used this method about local vibrational mode theory. Is this method reliable in measuring the chemical bond strength? Will I get trouble if I apply this method in my research project?

The force constant defined in the local vibrational mode theory is a reliable quantitative measure for chemical bond strength (especially for bonds of similar types).

After years of exploration, testing and application, this method has been extensively used by us and peer researchers to study various types of covalent bonds and non-covalent interactions (e.g. hydrogen/halogen bond). Our recent review article has listed the applications of the local vibrational mode theory as of April 2020.

Noteworthy is that Prof. Gernot Frenking who is an expert on energy decomposition analysis (EDA) recently published an article titled *The Strength of A Chemical Bond* on *Int. J. Quantum Chem.* with co-workers. He pointed out that "… the force constant is the **most general measure** for determining the strength of a chemical bond in molecules" and considered the local vibrational mode theory as "… the **best broadly applicable method** for estimating the strength of chemical bonds that is presently available."

Q: Could the local vibrational modes be experimentally measured in labs?

Local vibrational modes are generally not measurable in experiments except for situations like diatomic molecules, isotope substitution and overtone. This is because vibrational spectroscopy measures normal vibrational modes. However, one may consider one normal vibrational mode as a mixture of local vibrational modes.

Q: Is structure optimization a must before local mode analysis? Can I proceed even if there are some imaginary frequencies?

It is **required** to optimize the structure to a local minimum point.

If imaginary frequencies are found in vibrational analysis, one should not proceed to do local mode analysis. Try to eliminate the imaginary frequencies. This implies that current implementation of local mode analysis in LModeA-nano cannot be applied to analyze transition-state (TS) structure.

However, be cautious that some translational or rotational modes might have minor imaginary frequency values.

Q: Is cell optimization a must before local mode analysis for solids? Can I only optimize the Cartesian coordinates of atoms in a solid?

Yes, the complete cell optimization should be conducted. For example, in VASP program the ISIF=3 should be specified.

Q: Can I apply the local mode analysis to a system whose structure is partially optimized?

For a molecular system where some atoms are fixed during geometry optimization, one can first apply the generalized subsystem vibrational analysis (GSVA) implemented in the UniMoVib package to extract the effective Hessian matrix for the relaxed portion of the molecule (excluding the fixed atoms). Then one can use LModeA-nano to analyze the bond strength for the relaxed portion of this structure with the effective Hessian matrix.

For solid system (or periodic systems in general), GSVA is not extended yet.

Q: Does the consistency in the level of theory matter? Can I calculate one bond force constant at level A and calculate the force constant of a similar bond at level B, then directly compare their values?

While performing local mode analysis, the consistency in the level of theory should be guaranteed.

In other words, it is preferred to calculate a series of structures with the same level of theory in one program.

Q: I got some force constant value by selecting the H...H bond in a water molecule, is this result correct?

One should always be aware of what he/she is calculating in computational chemistry. The local stretching force constant should ONLY be calculated for two atoms between which there exists a chemical bond or non-covalent interaction. One should NEVER select two random atoms and interpret corresponding force constant as bond strength.

Q: Can I apply the local vibrational mode theory to measure the bond strength between two metal atoms?

If these two metal atoms exist in elemental metals (metallic solids consisting of only one element), it is not possible to apply the local vibrational mode theory because the phonon frequencies of the primitive cell at Gamma point are all zeros.

For other systems like metal clusters and metal oxides, one may apply the local vibrational mode theory to measure the bond strength between two metal atoms.

Q: As only the primitive cell structure is required for local mode analysis in solids, does the k-point sampling matter?

Yes, in order to get reasonable value, the k-point sampling of the first Brillouin zone should be sufficient.

Q: LModeA-nano gives force constant and frequency as output, which one should I used for chemical bond strength measure?

In most situations, one should choose force constant because it is independent of atomic masses.

Q: I got some error when selecting atoms for an angle in a solid structure? How can I handle this?

For an angle definition, it needs three atoms to be picked. Try pick the first atom within the primitive cell. :-)

Q: I got some error message when I load in the second structure after I analyze the first one. How to handle this issue?

One needs to close the current PyMOL window after analyzing one structure and reopen a new PyMOL window for another structure.

1.10 Need Help

If you encounter any trouble, please contact ywtao.smu[at]gmail.com or open an issue on GitHub.

1.11 Citing LModeA-nano

If you find LModeA-nano useful in your research, please support this project by citing the following paper in your publications/reports:

Y. Tao, W. Zou, S. Nanayakkara, et al., LModeA-nano: A PyMOL Plugin for Calculating Bond Strength in Solids, Surfaces, and Molecules via Local Vibrational Mode Analysis, J. Chem. Theory Comput. 18, 1821 (2022)

```
@article{Tao2022,
  year = {2022},
  volume = {18},
  number = {3},
  pages = {1821--1837},
  author = {Yunwen Tao and Wenli Zou and Sadisha Nanayakkara and Elfi Kraka},
  title = {{LModeA}-nano: A {PyMOL} Plugin for Calculating Bond Strength in Solids,_
  -Surfaces, and Molecules via Local Vibrational Mode Analysis},
  journal = {J. Chem. Theory Comput.}
```

Additional references include:

- Y. Tao, W. Zou, D Sethio, et al., In Situ Measure of Intrinsic Bond Strength in Crystalline Structures: Local Vibrational Mode Theory for Periodic Systems, J. Chem. Theory Comput. 15, 1761 (2019)
- E. Kraka, W. Zou, Y. Tao, Decoding Chemical Information from Vibrational Spectroscopy Data: Local Vibrational Mode Theory, WIREs: Comput. Mol. Sci. 10, e1480 (2020)

1.12 Application of LModeA-nano

Hydrogen Bonding in Ice Polymorphs

S. Nanayakkara, Y. Tao, E. Kraka, Capturing Individual Hydrogen Bond Strengths in Ices via Periodic Local Vibrational Mode Theory: Beyond the Lattice Energy Picture, J. Chem. Theory. Comput. 18, 562 (2022)

pubs.acs.org/JCTC

Article

Capturing Individual Hydrogen Bond Strengths in Ices via Periodic Local Vibrational Mode Theory: Beyond the Lattice Energy Picture

Sadisha Nanayakkara,[†] Yunwen Tao,[†] and Elfi Kraka*

different bond strength distributions, from uniform to inhomoge-

neous, were observed for the 16 ices and could be explained in

relation to different local structural elements within ices, that is, rings, that consist of different hydrogen bond types. In addition, criteria for the classification of hydrogen bonds as strong, intermediate, and weak were introduced. The latter was used to explore a different dimension of the water—ice phase diagram. These findings will provide important guidelines for assessing the credibility of new ice structures.

ENERGY

CHAPTER

TWO

ACKNOWLEDGEMENT & FUNDING

The LModeA-nano project is sponsored by National Science Fundation.